
What’s New in
IDL 6.0

IDL Version 6.0
July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved.

0703IDL60WN

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview of New Features in IDL 6.0 ... 9
New iTools for Interactive Analysis ... 10

Introducing the iTools ... 10
New iTool Routines .. 12
New iTool Object Classes ... 12
ITools User’s and Developer’s Guides ... 13

New IDL Virtual Machine .. 14
Getting the IDL Virtual Machine .. 14
Using the IDL Virtual Machine .. 14
New VM Keyword to the LMGR Routine ... 15

New IDL-Java Bridge ... 16
New Path Caching ... 17
What’s New in IDL 6.0 3

4

Visualization Enhancements .. 18
Object Graphics Font Rendering Improvements ... 18
New Depth Buffer Controls for Graphic Objects .. 22

Analysis Enhancements ... 24
New FITA and STATUS Keywords to CURVEFIT ... 24
New MEASURE_ERRORS Keyword to GAUSSFIT .. 24
New PIXEL_CENTER Keyword for ROI Masks ... 24
Enhancements to the INTERVAL_VOLUME, ISOSURFACE, and
MESH_DECIMATE Routines .. 25

Language Enhancements ... 26
Increment and Decrement Operators ... 26
Compound Assignment Operators .. 27
New Logical Operators ... 29
New Logical Operation Functions .. 30
LOGICAL_PREDICATE Compilation Option .. 31
Multiple Subscripts Now Allowed On Assignment ASSOC Variables 33
IEEE Floating Point NaN Comparisons Give Correct Results Under Microsoft
Windows .. 34
Enhancement to the ARRAY_EQUAL Routine ... 35
Enhancement to the HELP Routine ... 35
Enhancement to the MESSAGE Routine .. 35
Enhancement to the RESOLVE_ALL Routine ... 35
Enhancement to the SHMMAP Routine ... 35
Enhancement to the STRSPLIT Routine ... 36
New ARRAY_INDICES Function ... 36
New IDL_VALIDNAME Function .. 36

File Access Enhancements ... 37
NetCDF Library Update .. 37
Enhancement to the FILE_LINES Routine ... 37
New FILE_BASENAME and FILE_DIRNAME Functions 37

IDLDE Enhancements ... 38
Path Cache Preference ... 38
New Visualization Menu for iTools .. 38
Contents What’s New in IDL 6.0

5

User Interface Toolkit Enhancements ... 39
Enhancements to the DIALOG_PICKFILE Routine .. 39
Button Widget Enhancements .. 39
New WIDGET_PROPERTYSHEET Function .. 40
Enhancements to the WIDGET_CONTROL and WIDGET_INFO Routines 40
Enhancement to WIDGET_DROPLIST ... 40

Documentation Enhancements .. 41
New iTools User’s Guide ... 41
New iTools Developer’s Guide .. 41

New and Enhanced IDL Objects ... 42
New IDL Object Classes ... 42
New IDL Object Properties .. 45
IDL Object Property Enhancements ... 94
IDL Object Method Enhancements .. 96

New and Enhanced IDL Routines ... 97
New IDL Routines .. 97
IDL Routine Enhancements .. 99

Routines Obsoleted in IDL 6.0 .. 116
Requirements for this Release ... 117

IDL 6.0 Requirements ... 117
ION 2.0 Requirements .. 119

Chapter 2:
New IDL Object Classes ... 121
List of New Object Classes ... 122

Chapter 3:
New IDL Routines .. 123
ARRAY_INDICES ... 124
FILE_BASENAME ... 127
FILE_DIRNAME .. 130
ICONTOUR .. 133
IDL_VALIDNAME .. 156
IDLITSYS_CREATETOOL ... 158
IIMAGE ... 161
IPLOT .. 176
ISURFACE .. 194
What’s New in IDL 6.0 Contents

6

ITCURRENT ... 213
ITDELETE ... 215
ITGETCURRENT ... 217
ITREGISTER ... 219
ITRESET .. 222
IVOLUME ... 224
LOGICAL_AND ... 245
LOGICAL_OR .. 247
LOGICAL_TRUE .. 249
PATH_CACHE .. 251
WIDGET_PROPERTYSHEET ... 258

Chapter 4:
Using Java Objects in IDL .. 271
Overview .. 272

Java Terminology .. 272
IDL-Java Bridge Architecture ... 273

Initializing the IDL-Java Bridge .. 274
Configuring the Bridge .. 274

IDL-Java Bridge Data Type Mapping ... 277
Creating IDL-Java Objects .. 283

Java Class Names in IDL .. 283
Java Static Access ... 284

Method Calls on IDL-Java Objects .. 285
What Happens When a Method Call is Made? ... 285
Data Type Conversions ... 286

Managing IDL-Java Object Properties .. 287
Getting and Setting Properties ... 288

Destroying IDL-Java Objects .. 289
Showing IDL-Java Output in IDL ... 290
The IDLJavaBridgeSession Object .. 291
Java Exceptions .. 293
Contents What’s New in IDL 6.0

7

IDL-Java Bridge Examples ... 296
Accessing Arrays Example ... 296
Accessing URLs Example .. 299
Accessing Grayscale Images Example ... 301
Accessing RGB Images Example ... 304

Troubleshooting Your Bridge Session .. 314
Errors when Initializing the Bridge .. 314
Errors when Creating Objects ... 315
Errors when Calling Methods ... 316
Errors when Accessing Data Members ... 317

Index ... 319
What’s New in IDL 6.0 Contents

8

Contents What’s New in IDL 6.0

Chapter 1:

Overview of New
Features in IDL 6.0
This chapter contains the following topics:
New iTools for Interactive Analysis 10
New IDL Virtual Machine 14
New IDL-Java Bridge 16
New Path Caching . 17
Visualization Enhancements 18
Analysis Enhancements 24
Language Enhancements 26
File Access Enhancements 37

IDLDE Enhancements 38
User Interface Toolkit Enhancements 39
Documentation Enhancements 41
New and Enhanced IDL Objects 42
New and Enhanced IDL Routines 97
Routines Obsoleted in IDL 6.0 116
Requirements for this Release 117
What’s New in IDL 6.0 9

10 Chapter 1: Overview of New Features in IDL 6.0
New iTools for Interactive Analysis

Introducing the iTools

The new Intelligent Tools (iTools) are a set of interactive utilities that combine data
analysis and visualization with the task of producing presentation quality graphics.
Based on the IDL Object Graphics system, the iTools are designed to help you get the
most out of your data with minimal effort. They allow you to continue to benefit from
the control of a programming language, while enjoying the convenience of a point-
and-click environment.

In IDL 6.0, five pre-built iTools are exposed for immediate interactive use. Each of
these five tools is designed around a specific data or visualization type, including:

• Two and three dimensional plots (line, scatter, polar, and histogram style)

• Surface representations

• Contour lines

• Image displays

• Volume visualizations

The iTools are built upon a new object-oriented framework, or set of object classes,
that serve as the building blocks for the interface and functionality of the Intelligent
Tools. IDL programmers can easily use this framework to create custom data analysis
and visualization environments. Such custom Intelligent Tools may be called from
within a larger IDL application, or they may serve as the foundation for a complete
application in themselves.

A Single Tool with Many Faces

What sets the Intelligent Tools apart from precursors such as the Live Tools (now
obsolete with IDL 6.0) — and what gives them their optimal power, flexibility, and
extensibility — is the cohesive, open architecture of the Intelligent Tools system. The
iTools system is actually comprised of a single tool, which adapts to handle the data
that you pass to it. The plot, surface, image, contour, and volume tools are simply
shortcut configurations, which facilitate ad hoc data analysis and visualization. Each
tool encapsulates the functionality (data operations, display manipulations, and
visualization types) required to handle its data or visualization type. However, you
are not constrained to work with a single data or visualization type. For example,
using the Intelligent Tools system, you may start by bringing up a surface plot in a
surface tool and then import scattered point data into the same plot to see the
relationship between two datasets. Or, you may start with an image display, overlay
New iTools for Interactive Analysis What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 11
contours from another dataset, and map both the image and contours onto a three-
dimensional surface representation of a third dataset. By adding new data into an
iTool, it is easy to end up with a hybrid tool that can handle complex, composite
visualizations.

The main enhancements the new iTools provide are more mouse interactivity,
WYSIWYG (What-You-See-Is-What-You-Get) printing, built-in analysis, undo-redo
capabilities, layout control, and better-looking plots. These robust, pre-built tools
reduce the amount of programming IDL users must do to create interactive
visualizations. At the same time, the iTools integrate seamlessly with the IDL
Command Line, user interface controls, and custom algorithms. In this way, the
iTools maintain and enhance the control and flexibility IDL users rely on for data
exploration, algorithm design, and rapid application development.

Foundation for the Future

As you will discover, the iTools are compelling new tools to add to your arsenal.
They complement the strong foundation that IDL has maintained over the course of
its evolution. This foundation has made possible countless valuable user-written
applications across many disciplines and industries. However, the iTools also
represent the start of a new, updated display paradigm for IDL. While the iTools
system in IDL 6.0 is a powerful and flexible environment that will allow you to
immediately accelerate your data interpretation and reporting, it is only the
beginning. We will continue to build on this new technology in future releases. You
can look forward to more functionality, flexibility, and optimization as the iTools
system continues to grow.

We look forward to members of the IDL community building on the iTools system as
well. The iTools source code is included in the IDL distribution to allow you to:

• extend the pre-built tools with your own operations, manipulations,
visualization types, and GUI controls,

• create your own custom tools based on the iTools component framework,

• share your inventions with others in the IDL community via the RSI User-
Contributed Library (http://www.RSInc.com/codebank) or other avenues of
collaboration and distribution.
What’s New in IDL 6.0 New iTools for Interactive Analysis

http://www.RSInc.com/codebank

12 Chapter 1: Overview of New Features in IDL 6.0
New iTool Routines

Five new iTool routines allow access to the pre-built Intelligent Tools from the IDL
Command Line or within user-written code. The routines accept data parameters and
keywords to control the initial characteristics and allow for overplotting. Data access
and visualization properties can also be controlled interactively via the iTool user
interface.

The following iTool routines are a part of IDL 6.0:

• IPLOT - for two and three-dimensional plotting of line and point data. For
more details, see “IPLOT” in the IDL Reference Guide manual.

• ISURFACE - for surface representations of two-dimensional array data and
irregularly sampled point collections. For more details, see “ISURFACE” in
the IDL Reference Guide manual.

• ICONTOUR - for the production and manipulation of contour maps of two-
dimensional array data and irregularly sampled point collections. For more
details, see “ICONTOUR” in the IDL Reference Guide manual.

• IIMAGE - for image display, exploration, ROI definition, and basic
processing. For more details, see “IIMAGE” in the IDL Reference Guide
manual.

• IVOLUME - for volume rendering, manipulation, and dissection. For more
details, see “IVOLUME” in the IDL Reference Guide manual.

New iTool Object Classes

The new iTool object classes allow programmers to leverage the underlying iTool
component framework. Using these building blocks, you can create custom iTools
from scratch or extend existing iTools with your own operations, manipulations,
visualization types, and GUI controls.

The following iTool objects are a part of IDL 6.0. These object are described in the
IDL Reference Guide:

• IDLitCommand

• IDLitCommandSet

• IDLitComponent

• IDLitContainer

• IDLitData
New iTools for Interactive Analysis What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 13
• IDLitDataContainer

• IDLitDataOperation

• IDLitIMessaging

• IDLitManipulator

• IDLitManipulatorContainer

• IDLitManipulatorManager

• IDLitManipulatorVisual

• IDLitOperation

• IDLitParameter

• IDLitParameterSet

• IDLitReader

• IDLitTool

• IDLitUI

• IDLitVisualization

• IDLitWindow

• IDLitWriter

ITools User’s and Developer’s Guides

With the introduction of the Intelligent Tools, IDL 6.0 includes two new manuals:
The iTools User’s Guide walks you through calling the iTools and using the iTools
system interactively. The iTools Developer’s Guide instructs you on how to use the
iTools component framework to develop your own iTools or build on existing ones.
What’s New in IDL 6.0 New iTools for Interactive Analysis

14 Chapter 1: Overview of New Features in IDL 6.0
New IDL Virtual Machine

RSI now offers a freely distributable utility known as the IDL Virtual Machine. The
IDL Virtual Machine is designed to provide IDL users with a simple, no-cost method
for distributing IDL applications to colleagues and customers. It runs on all IDL
supported platforms (see “Requirements for this Release” on page 117) and does not
require a license to run.

The IDL Virtual Machine will run a compiled IDL .sav file even if no IDL license is
present. RSI’s aim with the IDL Virtual Machine is to facilitate IDL code
collaboration and application distribution. However, a few restrictions exist:

• The IDL Virtual Machine displays a splash screen on startup.

• .sav files must be created using IDL version 6.0 or later.

• No access to the IDL command line or IDL compiler is provided.

• IDL programs that call the EXECUTE function will not run in the IDL Virtual
Machine.

• Callable IDL applications and applications that use the IDL ActiveX control
will not run in the IDL Virtual Machine.

• The IDL Virtual Machine must be installed via the installation program
provided by RSI. You are prohibited from modifying the IDL Virtual Machine
distribution.

See the Building IDL Applications manual for more information on creating
applications for the IDL Virtual Machine.

Getting the IDL Virtual Machine

The IDL Virtual Machine is included with all IDL distributions, including the freely-
downloadable IDL installer available from RSI’s website (http://www.RSInc.com).
During installation, you can choose to install either a full IDL distribution (which
includes the IDL Virtual Machine) or just the IDL Virtual Machine distribution.

Using the IDL Virtual Machine

When you attempt to run a .sav file, IDL will first attempt to execute the file using a
licensed version of IDL. If no licenses are available, the .sav file will be executed in
IDL Virtual Machine mode.
New IDL Virtual Machine What’s New in IDL 6.0

http://www.RSInc.com

Chapter 1: Overview of New Features in IDL 6.0 15
To explicitly use the IDL Virtual Machine when an IDL license is present (for
debugging purposes for example), do one of the following:

Windows Platforms

• Drag the .sav file to the IDL Virtual Machine desktop icon.

• At the command prompt, use the following command:

idlrt -vm=file.sav

where file.sav is the name of the IDL .sav file.

UNIX Platforms

• At the command prompt, use the following command:

idl -vm=file.sav

where file.sav is the name of the IDL .sav file.

New VM Keyword to the LMGR Routine

The LMGR function has a new VM keyword that allows you to test whether the
current IDL session is running in IDL Virtual Machine mode. IDL Virtual Machine
applications do not provide access to the IDL Command Line.

See “LMGR” on page 106 for more details.
What’s New in IDL 6.0 New IDL Virtual Machine

16 Chapter 1: Overview of New Features in IDL 6.0
New IDL-Java Bridge

IDL now supports the use of Java objects. You can access Java objects within your
IDL code using the IDL-Java bridge, a built-in feature of IDL 6.0. The IDL-Java
bridge enables you to take advantage of functionality provided by Java, including
Java I/O, networking, and third party functionality.

The new IDLjavaObject class instantiates a desired Java object using the object’s
class name. An instance of this object within IDL allows you access methods and
data members (properties) of the desired Java object. The IDLjavaObject class is
defined in “IDLjavaObject” in the IDL Reference Guide manual.

To the IDL user, an instance of the IDLjavaObject class behaves just like any other
IDL object. You can read about the creation and management of Java objects within
IDL in Chapter 8, “Using Java Objects in IDL” in the External Development Guide
manual.

When an instance of the IDLjavaObject class is created, the IDL-Java bridge
connects that instance to a Java object. This initial connection starts a Java session. In
IDL, you can monitor the session through the IDLJavaBridgeSession object. This
object can be used to handle any exceptions (caused by the Java object) within IDL.
This bridge session object is also described in Chapter 8, “Using Java Objects in
IDL” in the External Development Guide manual.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, and
Macintosh platforms supported in IDL. See “Requirements for this Release” on
page 117 for more information on these platforms supported in IDL 6.0.
New IDL-Java Bridge What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 17
New Path Caching

The first time an IDL session attempts to call a function or procedure written in the
IDL language, it must locate the file containing the code for that routine and compile
it. The file containing the routine must have the same name as the routine, with either
a .pro or a .sav extension. After trying to open the file in the user’s current working
directory, IDL will attempt to open the file in each of the directories given by the
!PATH system variable, in the order specified by !PATH. The search stops with the
first directory containing a file with the desired name.

IDL now maintains an in-memory cache of the .pro and .sav files located in
directories referenced via the !PATH system variable. This path cache is built
automatically during normal operation, as IDL searches the directories specified by
!PATH to locate the code for IDL routines required at runtime. The path cache
operates on a per-directory basis. The current contents of the path cache can be
viewed using the HELP, /PATH_CACHE command. See “Enhancement to the HELP
Routine” on page 35 for more details.

Once a directory is cached, IDL knows whether or not it contains a given file, without
the need to actually attempt to open that file. This information allows IDL to skip the
open attempt in directories that do not have the desired file. As such, the path cache
can provide a significant boost in the speed of path searching. The startup speed of
large object oriented applications, is significantly improved by the path cache, as
method resolution requires heavy path searching activity.

The PATH_CACHE procedure is used to control IDL’s use of the path cache. In
almost all cases, the operation of the path cache is transparent to the IDL user, save
for the boost in path searching speed it provides. The cache automatically adjusts to
changes made to the setting of !PATH without the need for manual intervention.
Hence, PATH_CACHE should not be necessary in typical IDL operation. It exists to
allow complete control over the details of how and when the caching operation is
performed. See “PATH_CACHE” in the IDL Reference Guide manual for more
details.
What’s New in IDL 6.0 New Path Caching

18 Chapter 1: Overview of New Features in IDL 6.0
Visualization Enhancements

The following enhancements have been made to IDL’s visualization functionality for
the 6.0 release:

• Object Graphics Font Rendering Improvements

• New Depth Buffer Controls for Graphic Objects

Object Graphics Font Rendering Improvements

IDL 6.0 incorporates the FreeType Library for improved rendering of Object
Graphics fonts. Previously, characters in an IDLgrText object were rendered by
tessellating each glyph outline into a set of small triangles. IDL 6.0 renders an entire
IDLgrText string as a high quality bitmap, which is texture mapped onto a single
polygon. This technique allows for clearer characters at any size, easier
manipulations, background colors, kerning, and blending. For information on the
FreeType Project, visit http://www.freetype.org.

The properties to IDLgrText related to this new font rendering are:

• ALPHA_CHANNEL

• FILL_BACKGROUND

• FILL_COLOR

• KERNING

• RENDER_METHOD

Note
FreeType font rendering is now the default text rendering method in IDL. If you
need to switch back to the triangle method, the RENDER_METHOD property can
be used to change the type of font rendering.

For more details on these properties, see “IDLgrText” on page 81.

Examples: Font Rendering Improvements

The following example routines show how to use the new font properties to the
IDLgrText object. While running these routines, you can proceed to the next display
by quitting (File → Quit) out of the current XOBJVIEW display.
Visualization Enhancements What’s New in IDL 6.0

http://www.freetype.org

Chapter 1: Overview of New Features in IDL 6.0 19
This first example compares simple font rendering tasks in IDL 6.0 and previous
versions of IDL.

PRO ExCompareSimpleFonts

; Create previous version text object and IDL 6.0 text
; object (with kerning applied).
oText1 = OBJ_NEW('IDLgrText', 'IDL 5.6', $

RENDER_METHOD = 1, LOCATIONS = [0, 0.05, 0])
oText2 = OBJ_NEW('IDLgrText', 'IDL 6.0', $

LOCATIONS = [0, -0.05, 0], /KERNING)

; Show the text objects.
oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oText1
oModel -> Add, oText2
XOBJVIEW, oModel, /BLOCK

; Put a polygon behind the text and give the IDL 6.0 text
; a background color.
oText2 -> SetProperty, FILL_BACKGROUND = 1, $

FILL_COLOR = [0, 255, 0]
oPoly = OBJ_NEW('IDLgrPolygon', [-0.1, 0.1, 0.1, -0.1], $

[0.1, 0.1, -0.1, -0.1], [0., 0., 0., 0.], $
COLOR = [255, 0, 0], /DEPTH_OFFSET)

; Show the polygon and updated text objects.
oModel -> Add, oPoly
XOBJVIEW, oModel, /BLOCK

; Make the text semi-transparent to let the polygon
; show through and display the results.
oText2 -> SetProperty, ALPHA_CHANNEL = 0.5
XOBJVIEW, oModel, /BLOCK

; Cleanup.
OBJ_DESTROY, [oModel]

END
What’s New in IDL 6.0 Visualization Enhancements

20 Chapter 1: Overview of New Features in IDL 6.0
The following figure shows the results of this example:

The following example is more involved than the previous one. It shows how to use
IDL 6.0’s font rendering improvements to clarify cluttered axis and data labels.

PRO ExFreeTypeAxes

; Create data.
angle = 2.*!PI*(0.5 - (FINDGEN(37)/36.))
amplitude = 5*SIN(angle)

; Create a model to contain the plots, axes, labels, and titles
; to that model.
oModel = OBJ_NEW('IDLgrModel')

; Create plots and add them to the model.
oPlots = OBJARR(5)
FOR i = 0, 4 DO BEGIN

oPlots[i] = OBJ_NEW('IDLgrPlot', angle, $
(amplitude*(1. - (i*0.05))))

ENDFOR
oPlots[0] -> GetProperty, XRANGE = xRange, YRANGE = yRange
oModel -> Add, oPlots

; Create axes and add them to the model.
oXAxis = OBJ_NEW('IDLgrAxis', 0, $

RANGE = xRange, /EXACT)
oModel -> Add, oXAxis
oYAxis = OBJ_NEW('IDLgrAxis', 1, $

RANGE = yRange, /EXACT)
oModel -> Add, oYAxis

; Create labels and add them to the model.
xLabel = 2.*!PI*(0.5 - (FINDGEN(20)/19.))
yLabel = 5*SIN(xLabel)
oLabels = OBJARR(N_ELEMENTS(xLabel))
FOR i = 0, (N_ELEMENTS(oLabels) - 1) DO BEGIN

Figure 1-1: FreeType Rendering Compared to Previous Rendering
Visualization Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 21
oLabels[i] = OBJ_NEW('IDLgrText', $
STRTRIM(xLabel[i],2), $
LOCATION = [xLabel[i], yLabel[i]], $
CHAR_DIMENSIONS = [0.3, 0.3], $
ALIGNMENT = 0.5)

ENDFOR
oModel -> Add, oLabels

; Create titles and add them to the model.
oXTitle = OBJ_NEW('IDLgrText', $

'Alpha = Angle (Radians)', LOCATION = [0, yRange[0]], $
ALIGNMENT = 0.5, CHAR_DIMENSIONS = [0.5, 0.5], $
ZCOORD_CONV = [0.1, 1])

oModel -> Add, oXTitle
oYTitle = OBJ_NEW('IDLgrText', $

'Epsilon = Amplitude (Centimeters)', $
LOCATION = [xRange[0], 0], ALIGNMENT = 0.5, $
CHAR_DIMENSIONS = [0.5,0.5], BASELINE = [0, 1], $
UPDIR = [-1, 0], ZCOORD_CONV = [0.1, 1])

oModel -> Add, oYTitle
oTitle = OBJ_NEW('IDLgrText', 'SINE WAVE', $

ALIGNMENT = 0.5, VERTICAL_ALIGNMENT = -1., $
LOCATIONS = [MEAN(xRange), yRange[1]], $
CHAR_DIMENSIONS = [0.7, 0.7])

oModel -> Add, oTitle

; Display the model.
XOBJVIEW, oModel, /BLOCK, SCALE = 0.9, $

TITLE = 'Original Display'

; Make the axis titles translucent.
oXTitle -> SetProperty, /FILL_BACKGROUND, $

FILL_COLOR = [230, 230, 230], ALPHA_CHANNEL = 0.5
oYTitle -> SetProperty, /FILL_BACKGROUND, $

FILL_COLOR = [230, 230, 230], ALPHA_CHANNEL = 0.5

; Make the labels translucent.
FOR i = 0, (N_ELEMENTS(oLabels) - 1) DO BEGIN

oLabels[i] -> SetProperty, ALPHA_CHANNEL = 0.6
ENDFOR

; Display the modified model.
XOBJVIEW, oModel, /BLOCK, SCALE = 0.9, $

TITLE = 'Improved Display'

; Cleanup object references.
OBJ_DESTROY, oModel

END
What’s New in IDL 6.0 Visualization Enhancements

22 Chapter 1: Overview of New Features in IDL 6.0
New Depth Buffer Controls for Graphic Objects

In graphics rendering, the depth buffer is an array of depth values maintained by a
graphics device, one value per pixel, to record the depth of primitives rendered at
each pixel. It is usually used to prevent the drawing of objects located behind other
objects that have already been drawn in order to generate a visually correct scene. In
IDL, smaller depth values are closer to the viewer.

New properties to graphic objects in IDL 6.0 provide more control over how Object
Graphics primitives are affected by the depth buffer. You can now control which
primitives may be rejected from rendering by the depth buffer, how the primitives are
rejected, and which primitives may update the depth buffer.

Control of the depth buffer is achieved through a test function or by completely
disabling the buffer. The depth test function is a logical comparison function used by
the graphics device to determine if a pixel should be drawn on the screen. This
decision is based on the depth value currently stored in the depth buffer and the depth
of the primitive at that pixel location.

The test function is applied to each pixel of an object. A pixel of the object is drawn if
the object’s depth at that pixel passes the test function set for that object. If the pixel
passes the depth test, the depth buffer value for that pixel is also updated to the pixel’s
depth value.

The possible test functions are:

• INHERIT - use the test function set for the parent model or view.

• NEVER - never passes.

• LESS - passes if the depth of the object’s pixel is less than the depth buffer’s
value.

• EQUAL - passes if the depth of the object’s pixel is equal to the depth buffer’s
value.

• LESS OR EQUAL - passes if the depth of the object’s pixel is less than or
equal to the depth buffer’s value.

• GREATER - passes if the depth of the object’s pixel is greater than or equal to
the depth buffer’s value.

• NOT EQUAL - passes if the depth of the object’s pixel is not equal to the depth
buffer’s value.
Visualization Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 23
• GREATER OR EQUAL - passes if the depth of the object’s pixel is greater
than or equal to the depth buffer’s value.

• ALWAYS - always passes

The IDL default is LESS. Commonly used values are LESS and LESS OR EQUAL,
which allow primitives closer to the viewer to be drawn.

Disabling the depth test function allows all primitives to be drawn on the screen
without testing their depth against the values in the depth buffer. When the depth test
is disabled, the graphics device effectively uses the painter’s algorithm to update the
screen. That is, the last item drawn at a location is the item that remains visible. The
depth test function of ALWAYS produces the same result as disabling the depth test.

Moreover, you can disable updating the depth buffer. Disabling depth buffer writing
prevents the updating of depth information as primitives are drawn to the frame
buffer. Such primitives are unprotected in the sense that any other primitive drawn
later at that location will draw over it as if it were not there.

Most atomic graphics objects now have the following new properties related to the
depth buffer:

• DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE

For more details on these properties, see “New IDL Object Properties” on page 45.
What’s New in IDL 6.0 Visualization Enhancements

24 Chapter 1: Overview of New Features in IDL 6.0
Analysis Enhancements

The following enhancements have been made to IDL’s data analysis functionality for
the 6.0 release:

• New FITA and STATUS Keywords to CURVEFIT

• New MEASURE_ERRORS Keyword to GAUSSFIT

• New PIXEL_CENTER Keyword for ROI Masks

• Enhancements to the INTERVAL_VOLUME, ISOSURFACE, and
MESH_DECIMATE Routines

New FITA and STATUS Keywords to CURVEFIT

The FITA keyword to the CURVEFIT routine allows you to specify parameters that
should remain fixed.

The STATUS keyword to the CURVEFIT routine specifies a named variable that will
contain an integer indicating the status of the computation.

See “CURVEFIT” on page 99 for more details.

New MEASURE_ERRORS Keyword to GAUSSFIT

A new MEASURE_ERRORS keyword has been added to GAUSSFIT, which allows
you to pass in a vector of standard measurement errors for each data point. Prior to
IDL6.0, GAUSSFIT would assume measurement errors of 1.0 for each point. Now, if
MEASURE_ERRORS is not specified, the measurement errors are assumed to be
zero.

See “GAUSSFIT” on page 101 for more details.

New PIXEL_CENTER Keyword for ROI Masks

You can now fine tune the offset between pixels and coordinates for ROI vertices.
The PIXEL_CENTER allows you to specify the location of the lower-left mask pixel.

For more details, see “IDLanROI::ComputeMask” on page 96.
Analysis Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 25
Enhancements to the INTERVAL_VOLUME,
ISOSURFACE, and MESH_DECIMATE Routines

The INTERVAL_VOLUME procedure, ISOSURFACE procedure, and
MESH_DECIMATE function now provide a way to monitor the progress of the
algorithms performed by these routines; using the PROGRESS_CALLBACK,
PROGRESS_METHOD, PROGRESS_OBJECT, PROGRESS_PERCENT, and
PROGRESS_USERDATA keywords. By using these keywords, you can present
progress bars to your users during the execution of these routines. See
“INTERVAL_VOLUME” on page 102, “ISOSURFACE” on page 104, and
“MESH_DECIMATE” on page 107 for details.
What’s New in IDL 6.0 Analysis Enhancements

26 Chapter 1: Overview of New Features in IDL 6.0
Language Enhancements

The following enhancements have been made to the core of the IDL Language for the
6.0 release:

• Increment and Decrement Operators

• Compound Assignment Operators

• New Logical Operators

• New Logical Operation Functions

• LOGICAL_PREDICATE Compilation Option

• Multiple Subscripts Now Allowed On Assignment ASSOC Variables

• IEEE Floating Point NaN Comparisons Give Correct Results Under Microsoft
Windows

• Enhancement to the ARRAY_EQUAL Routine

• Enhancement to the HELP Routine

• Enhancement to the MESSAGE Routine

• Enhancement to the RESOLVE_ALL Routine

• Enhancement to the SHMMAP Routine

• Enhancement to the STRSPLIT Routine

• New ARRAY_INDICES Function

• New IDL_VALIDNAME Function

Increment and Decrement Operators

IDL now includes increment (++) and decrement (--) operators that can be applied to
variables of any numeric type. The ++ operator increments the target variable by one.
The -- operator decrements the target by one.

Increment and decrement operators can be used, along with a variable, as standalone
statements:

• A++ or ++A

• A-- or --A
Language Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 27
The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable is incremented in place and no temporary copies of the
data are made.

The increment and decrement operators can also be used within expressions. When
the operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of the variable A is 27, while B is 28:

B = 27
A = B++

In contrast, after executing the following statements, both A and B have a value of 26:

B = 27
A = --B

Although the standalone statement and expression forms are very similar, the
expression form has some efficiency and side-effect issues that do not apply to the
statement form. See “Increment/Decrement” in Chapter 2 of the Building IDL
Applications manual for details.

Compound Assignment Operators

IDL now supports the following compound assignment operators:

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op is an IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression is any IDL
expression, produces the same result as the statement:

A = A op (expression)

##= #= *= += -=

/= <= >= AND= EQ=

GE= GT= LE= LT= MOD=

NE= OR= XOR= ^=
What’s New in IDL 6.0 Language Enhancements

28 Chapter 1: Overview of New Features in IDL 6.0
The statement using the compound operator makes more efficient use of memory
because it performs the operation on the target variable A in place. In contrast, the
statement using the simple operators makes a copy of the variable A, performs the
operation on the copy, and then assigns the resulting value back to A, temporarily
using extra memory.

The following statement:

A op= expression

is equivalent to the IDL statement:

A = TEMPORARY(A) op (expression)

which uses the TEMPORARY function to avoid making a copy of the variable A.
While there is no efficiency benefit to using the compound operator rather than the
TEMPORARY function, the compound operator allows you to write the same
statement more succinctly.

Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate
whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

The first statement assigns the value 23 to a variable named AAND. The second
statement performs the AND operation between A and 23, storing the result back into
A.

Compound operators that do not involve IDL keywords (+=, for example) do not
require whitespace in order to be properly parsed by IDL, although such whitespace
is recommended for code readability. That is, the statements

A+=23
A += 23

are identical, but the latter is more readable.
Language Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 29
New Logical Operators

There are three new logical operators in IDL: &&, ||, and ~.

&&

The logical && operator performs the logical short-circuiting “and” operation on two
scalars or one-element arrays, returning 1 if both operands are true and 0 if either
operand is false.

||

The logical || operator performs the logical short-circuiting “or” operation on two
scalars or one-element arrays, returning 1 if either of the operands is true and 0 if
both are false.

~

The logical ~ operator performs the logical “not” operation on a scalar or array
operand. If the operand is a scalar, it returns scalar 1 if the operand is false or scalar 0
if the operand is true. If the operand is an array, it returns an array containing a 1 for
each element of the operand array that is false, and a 0 for each element that is true.

Note
Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1’s complement),
and for ! to be used for logical negation. This is not the case in IDL: ! is used to
reference system variables, the NOT operator performs bitwise negation, and ~
performs logical negation.

When is an Operand True?

When evaluated by a logical operator, an expression is considered to be “true” under
the following conditions:

• For numerical operands, if the value is non-zero.

• For string operands, if the value is non-null.

• For heap variables (pointers and object references), if the point or object
reference is non-null.
What’s New in IDL 6.0 Language Enhancements

30 Chapter 1: Overview of New Features in IDL 6.0
Short-circuiting

The && and || logical operators are short-circuiting operators. This means that IDL
does not evaluate the second operand unless it is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, since it allows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Op1 && Op2

IDL does not evaluate Op2 if Op1 is false, because it already knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Op1 || Op2

IDL does not evaluate Op2 if Op1 is true, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the new LOGICAL_AND
and LOGICAL_OR functions (described in the next section) or the bitwise AND and
OR operators.

New Logical Operation Functions

IDL 6.0 introduces three new functions that perform logical Boolean operations on
their arguments:

LOGICAL_AND

The new LOGICAL_AND function performs a logical AND operation on its
arguments. It returns True (1) if both of its arguments are non-zero (non-NULL for
strings and heap variables), or False (0) otherwise.

Unlike the && operator, LOGICAL_AND does not short-circuit when evaluating its
arguments. Both arguments are always evaluated.

Note
LOGICAL_AND always returns either 0 or 1, unlike the AND operator, which
performs a bitwise AND operation on integers, and returns one of the two
arguments for other types.

For more information, see “LOGICAL_AND” in the IDL Reference Guide manual.
Language Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 31
LOGICAL_OR

The new LOGICAL_OR function performs a logical OR operation on its arguments.
It returns True (1) if either of its arguments are non-zero (non-NULL for strings and
heap variables), and False (0) otherwise.

Unlike the || operator, LOGICAL_OR does not short-circuit when evaluating its
arguments. Both arguments are always evaluated.

Note
LOGICAL_OR always returns either 0 or 1, unlike the OR operator, which
performs a bitwise OR operation on integers, and returns one of the two arguments
for other types.

For more information, see “LOGICAL_OR” in the IDL Reference Guide manual.

LOGICAL_TRUE

The new LOGICAL_TRUE function returns True (1) if its arguments are non-zero
(non-NULL for strings and heap variables), and False (0) otherwise.

For more information, see “LOGICAL_TRUE” in the IDL Reference Guide manual.

LOGICAL_PREDICATE Compilation Option

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears. The LOGICAL_PREDICATE
compilation option has been added in IDL 6.0.

When running a routine compiled with the LOGICAL_PREDICATE option set, from
the point where the COMPILE_OPT statement appears until the end of the routine,
IDL will treat any non-zero or non-NULL predicate value as “true,” and any zero or
NULL predicate value as “false.”
What’s New in IDL 6.0 Language Enhancements

32 Chapter 1: Overview of New Features in IDL 6.0
Background

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates such expressions
in the following contexts:

• IF...THEN...ELSE statements

• ? : inline conditional expressions

• WHILE...DO statements

• REPEAT...UNTIL statements

• when evaluating the result from an INIT function method to determine if a call
to OBJ_NEW successfully created a new object

By default, IDL uses the following rules to determine whether an expression is true or
false:

• Integer — An integer is considered true if its least significant bit is 1, and false
otherwise. Hence, odd integers are true and even integers (including zero) are
false. This interpretation of integer truth values is sometimes referred to as
“bitwise,” reflecting the fact that the value of the least significant bit
determines the result.

• Other — Non-integer numeric types are true if they are non-zero, and false
otherwise. String and heap variables (pointers and object references) are true if
they are non-NULL, and false otherwise.

The LOGICAL_PREDICATE option alters the way IDL evaluates predicate
expressions. When LOGICAL_PREDICATE is set for a routine, IDL uses the
following rules to determine whether an expression is true or false:

• Numeric Types — A number is considered true if its value is non-zero, and
false otherwise.

• Other Types — Strings and heap variables (pointers and object references) are
considered true if they are non-NULL, or false otherwise.

Note on the NOT Operator

When using the LOGICAL_PREDICATE compile option, you must be aware of the
fact that applying the IDL NOT operator to integer data computes a bitwise negation
(1’s complement), and is generally not applicable for use in logical computations.
Consider the common construction:

WHILE (NOT EOF(lun)) DO BEGIN
...
ENDWHILE
Language Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 33
The EOF function returns 0 while the file specified by LUN has data left, and returns
1 when hits the end of file. However, the expression “NOT 1” has the numeric value
-2. When the LOGICAL_PREDICATE option is not in use, the WHILE statement
sees -2 as false; if the LOGICAL_PREDICATE is in use, -2 is a true value and the
above loop will not terminate as desired.

The proper way to write the above loop uses the ~ logical negation operator:

WHILE (~EOF(lun)) DO BEGIN
...
ENDWHILE

It is worth noting that this version will work properly whether or not the
LOGICAL_PREDICATE compile option is in use. Logical negation operations
should always use the ~ operator in preference to the NOT operator, reserving NOT
exclusively for bitwise computations.

Multiple Subscripts Now Allowed On Assignment
ASSOC Variables

An associated variable (created via the ASSOC function) is a variable that maps the
structure of an IDL array or structure variable onto the contents of a file. The file is
treated as an array of these repeating units of data. The first array or structure in the
file has an index of 0, the second as an index of 1, and so on. Such variables do not
keep data in memory like a normal variable. Instead, when an associated variable is
subscripted with the index of the desired array or structure within the file, IDL
performs the input/output operation required to access the data. In all cases, the entire
array associated with an index is input or output as a complete unit.

Previous versions of IDL allow you to specify additional subscripts in addition to the
array index when fetching data in order to extract sub-elements of the array. This is
implemented by reading the entire array into memory, and then performing the
subscripted fetch operation on this in memory copy. This ability was allowed on data
input only - only a single array index was allowed when writing data back. Hence,
data could be written to an ASSOC variable only as a complete array. This limitation
has been removed with IDL 6.0. Multiple subscripts can now be specified both
reading and writing.
What’s New in IDL 6.0 Language Enhancements

34 Chapter 1: Overview of New Features in IDL 6.0
The following statements use an associated variable of 10x10 arrays in the file
data.dat to illustrate:

OPENW, unit, 'data.dat', /GET_LUN ; Open file.
A = ASSOC(unit, FLTARR(10, 10)) ; Associate variable.
A[1] = FINDGEN(10) ; Write findgen array value

; to file at index 1.
B = A[2, 3, 1] ; Read data element [2,3]

; from the array at index 1.
A[2, 3, 1] = 1001.7 ; Write new value to data

; element [2,3] of array at
; index 1.

The final statement above is allowed by IDL 6.0, but not by previous versions. It is
implemented by reading the entire array at the specified index into memory,
performing the subscripted store operation on the in-memory copy, and then writing
the entire array back to the file at the specified index.

Note
Although notationally convenient, specifying multiple subscripts to ASSOC
variables can be inefficient due to all the implicit Input/Output it generates. For
large numbers of such accesses, we recommend reading the entire array into
memory once, performing all the operations on the in-memory variable, and then
writing the array back.

IEEE Floating Point NaN Comparisons Give Correct
Results Under Microsoft Windows

According to the IEEE floating point standard, the Not A Number value (NaN) has
the unique property that it is not equal to any other number, including itself. In IDL
terms, this means that the expression:

!VALUES.F_NAN EQ !VALUES.F_NAN

should yield the value False (0). Making this work is the shared responsibility of the
underlying hardware, operating system, and language compiler used to build a
program (in the case of IDL, of the C/C++ compiler used to build IDL). Many
programs use this identity to locate the NaN values within data.

Previous Microsoft C/C++ compilers did not generate floating point code that works
properly in this case, and comparisons of NaN with itself would incorrectly yield
True (1). IDL 6.0 is built with the latest Microsoft Visual C/C++ 7.0 compiler, which
generates correct floating point code for IEEE comparisons. Hence, IDL 6.0 for
Microsoft Windows correctly evaluates NaN comparisons.
Language Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 35
This means that IDL 6.0 properly evaluates NaN comparisons on all supported
platforms, the first release in IDL history for which this has been true.

Enhancement to the ARRAY_EQUAL Routine

The ARRAY_EQUAL function now also works on pointer and object references.
When ARRAY_EQUAL is used with these types of references, it compares the
references, not the heap variables to which the references point.

Enhancement to the HELP Routine

The HELP procedure has been enhanced with the PATH_CACHE keyword, which
allows you to display a list of directories currently included in the IDL path cache,
along with the number of .pro or .sav files found in those directories. See “New Path
Caching” on page 17 for more details on path caching.

Enhancement to the MESSAGE Routine

The MESSAGE procedure now allows you to re-issue the most recent error, using the
REISSUE_LAST keyword. By using this keyword in conjunction with the CATCH
procedure, your code can catch an error caused by called code, perform recovery
actions, and then reissue the error to your caller. See “MESSAGE” on page 109 for
details.

Enhancement to the RESOLVE_ALL Routine

The RESOLVE_ALL procedure now allows you to specify a list of object class
names via the new CLASS keyword. Class definition files for the specified classes
and their superclasses are compiled, as are all methods of the specified classes and
their superclasses. See “RESOLVE_ALL” on page 109 for details.

Enhancement to the SHMMAP Routine

The SHMMAP routine has been enhanced to allow creation of a private file mapping
to a file for which the user has only read permission. See “SHMMAP” on page 110
for details.
What’s New in IDL 6.0 Language Enhancements

36 Chapter 1: Overview of New Features in IDL 6.0
Enhancement to the STRSPLIT Routine

The STRSPLIT function now allows you to obtain the number of matched substrings
returned by STRSPLIT via the new COUNT keyword. See “STRSPLIT” on page 110
for details.

New ARRAY_INDICES Function

The new ARRAY_INDICES function converts one-dimensional subscripts of an
array into corresponding multi-dimensional subscripts. See “ARRAY_INDICES” in
the IDL Reference Guide manual for more details.

New IDL_VALIDNAME Function

The new IDL_VALIDNAME function determines whether a string may be used as a
valid IDL identifier (e.g. variable name, structure tag name, etc.). See
“IDL_VALIDNAME” in the IDL Reference Guide manual for more details.
Language Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 37
File Access Enhancements

The following enhancements have been made in the area of File Access in the IDL
6.0 release:

• NetCDF Library Update

• Enhancement to the FILE_LINES Routine

• New FILE_BASENAME and FILE_DIRNAME Functions

NetCDF Library Update

IDL 6.0 has been upgraded to use NetCDF version 3.5. This library upgrade does not
include new functionality added to the NetCDF code library since version 2.4.
However, it does take advantage of performance improvements, bug fixes, and other
such enhancements.

Enhancement to the FILE_LINES Routine

The FILE_LINES function now allows you to obtain the number of lines of text
within a GZIP compressed file or files, using the COMPRESS keyword. If this
keyword is set, FILE_LINES assumes the input files are compressed in the standard
GZIP format, and decompresses the data to count the number of lines. See
“FILE_LINES” on page 100 for details.

New FILE_BASENAME and FILE_DIRNAME
Functions

Given a file path, the new FILE_BASENAME function returns the base file name it
references, and the new FILE_DIRNAME function returns the directory part (i.e. all
of the path except for the base file name). These functions are similar to, and based
on, the standard Unix basename(1) and dirname(1) utilities.

See “FILE_BASENAME” and “FILE_DIRNAME” in the IDL Reference Guide
manual for more details.
What’s New in IDL 6.0 File Access Enhancements

38 Chapter 1: Overview of New Features in IDL 6.0
IDLDE Enhancements

The IDL Development Environment has been enhanced in the following ways for the
6.0 release:

• Path Cache Preference

• New Visualization Menu for iTools

Path Cache Preference

The Path tab of the Preferences dialog now allows you to enable or disable the IDL
path cache mechanism.

New Visualization Menu for iTools

The new Visualization submenu to the File → New menu allows you to access the
five new pre-built iTools for interactive plotting.

See “New iTools for Interactive Analysis” on page 10 for more information on the
pre-built iTools.

Figure 1-2: New Visualization Menu
IDLDE Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 39
User Interface Toolkit Enhancements

The following enhancements have been made to IDL’s UI toolkit for the 6.0 release to
help you give your IDL applications more powerful and friendly user interfaces:

• Enhancements to the DIALOG_PICKFILE Routine

• Button Widget Enhancements

• New WIDGET_PROPERTYSHEET Function

• Enhancements to the WIDGET_CONTROL and WIDGET_INFO Routines

Enhancements to the DIALOG_PICKFILE Routine

The DIALOG_PICKFILE function now allows you to specify a default extension,
with the DEFAULT_EXTENSION keyword. By setting this keyword to a scalar
string representing the default extension, you can append the value returned by
DIALOG_PICKFILE with this extension.

You can now also prompt users when using DIALOG_PICKFILE to attempt to
overwrite files. By setting the OVERWRITE_PROMPT keyword along with the
WRITE keyword, DIALOG_PICKFILE will automatically prompt the user with an
overwrite dialog when a file that already exists is selected. See
“DIALOG_PICKFILE” on page 99 for details.

Button Widget Enhancements

The PUSHBUTTON_EVENTS keyword has been added to WIDGET_BUTTON,
allowing you to create buttons that generate separate widget events when the mouse
button or space bar is pressed and released. See “WIDGET_BUTTON” on page 111
for details.

The PUSHBUTTON_EVENTS keyword has been added to WIDGET_CONTROL,
allowing you to change the widget event generation properties of a button widget
after creation. See “WIDGET_CONTROL” on page 112 for details.

The PUSHBUTTON_EVENTS keyword has been added to WIDGET_INFO,
allowing you to query the pushbutton events setting of a specified button widget. See
“WIDGET_INFO” on page 113 for details.
What’s New in IDL 6.0 User Interface Toolkit Enhancements

40 Chapter 1: Overview of New Features in IDL 6.0
New WIDGET_PROPERTYSHEET Function

The new WIDGET_PROPERTYSHEET function creates a property sheet widget,
which exposes the properties of an IDL object in a graphical interface.

For more details, see “WIDGET_PROPERTYSHEET” in the IDL Reference Guide
manual.

Enhancements to the WIDGET_CONTROL and
WIDGET_INFO Routines

The WIDGET_CONTROL procedure and the WIDGET_INFO function now allow
access to the new property sheet widget.

By setting WIDGET_CONTROL’s new REFRESH_PROPERTY keyword to a
property identifier or array of identifiers, you can synchronize the identified
properties with their values in a component. See “WIDGET_CONTROL” on
page 112 for more details.

By setting WIDGET_INFO’s new COMPONENT keyword to an object reference of
a component, you can query specific components within a property sheet containing
multiple components. By setting WIDGET_INFO’s new PROPERTY_VALID
keyword to a string, you can determine if that string is a valid identifier. If the
identifier is valid, WIDGET_INFO’s new PROPERTY_VALUE keyword can be set
to this identifier to retrieve the value of the identified property within the property
sheet. See “WIDGET_INFO” on page 113 for more details.

Enhancement to WIDGET_DROPLIST

The value of the list in a droplist widget can now be retrieved using the GET_VALUE
keyword to WIDGET_CONTROL. The list values are returned as a scalar string or
string array.
User Interface Toolkit Enhancements What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 41
Documentation Enhancements

In addition to documentation for new and enhanced IDL features, the following
enhancements to the IDL documentation set are included in the 6.0 release:

• New iTools User’s Guide

• New iTools Developer’s Guide

New iTools User’s Guide

The new iTools are a set of interactive utilities that combine data analysis and
visualization with the task of producing presentation quality graphics. Five iTools
have been pre-built in IDL 6.0:

• iContour - for contour lines

• iImage - for image displays

• iPlot - for two and three dimensional plots

• iSurface - for surface representations

• iVolume - for volume visualizations

The iTools User’s Guide walks you through calling these tools and using the iTool
system interactively.

New iTools Developer’s Guide

The new iTool system can be used to extend the pre-built tools with your own
operations, manipulations, visualization types, and GUI controls. This system can
also be used to create your own custom tools based on the iTools component
framework. The iTools Developer’s Guide instructs you on how to use the iTools
component framework to develop your own iTools or build on existing ones.
What’s New in IDL 6.0 Documentation Enhancements

42 Chapter 1: Overview of New Features in IDL 6.0
New and Enhanced IDL Objects

This section describes the following:

• New IDL Object Classes

• New IDL Object Properties

• IDL Object Property Enhancements

• IDL Object Method Enhancements

Note
All the atomic graphical (IDLgr*) object classes are now subclasses of the new
IDLitComponent object class.

New IDL Object Classes

The following table describes the new object classes in IDL 6.0 for Windows.

New Object Class Description

IDLitCommand The base functionality for the iTools
command buffer system.

IDLitCommandSet A container for IDLitCommand objects,
which allows a group of commands to be
managed as a single item.

IDLitComponent A core or base component, from which all
other components subclass.

Note - This class is now a superclass of all
the atomic graphical (IDLgr*) object
classes.

IDLitContainer A specialization of the IDL_Container class
that manages a collection of
IDLitComponents and provides methods
for working with the Identifier system of the
iTools framework.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 43
IDLitData A generic data storage object that can hold
any IDL data type available. It provides
typing, metadata, and data change
notification functionality. When coupled
with IDLitDataContainer, it forms the
element for the construction of composite
data types.

IDLitDataContainer A container for IDLitData and
IDLitDataContainer objects. This container
is used to form hierarchical data structures.
Data and DataContainer objects can be
added and removed to/from a
DataContainer during program execution,
allowing for dynamic creation of composite
data types.

IDLitDataOperation A subclass to IDLitOperation that
automates data access and automatically
records information for the undo-redo
system.

IDLitIMessaging An interface providing common methods to
send or trigger messaging and error actions,
which may occur during execution.

IDLitManipulator The base functionality of the iTools
manipulator system.

IDLitManipulatorContainer A container for IDLitManipulator objects,
which allows for the construction of
manipulator hierarchies. This container
implements the concept of a current
manipulator for the items it contains.

IDLitManipulatorManager A specialization of the manipulator
container (IDLitManipulatorContainer),
which acts as the root of the manipulator
hierarchy.

IDLitManipulatorVisual The basis of all visual elements associated
with an interactive manipulator.

New Object Class Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

44 Chapter 1: Overview of New Features in IDL 6.0
IDLitOperation The basis for all iTool operations. It defines
how an operation is executed and how
information about the operation is recorded
for the command transaction (undo-redo)
system.

IDLitParameter An interface providing parameter
management methods to associate
parameter names with IDLitData objects.

IDLitParameterSet A specialized subclass of the
IDLitDataContainer class. This class
provides the ability to associate names with
contained IDLitData objects.

IDLitReader The definition of the interface and the
process used to construct file readers for the
iTools framework. When a new file reader is
constructed for the iTools system, a new
class is subclassed from this IDLitReader
class.

IDLitTool All the functionality provided by a
particular instance of an IDL Intelligent
Tool (iTool). This object provides the
management systems for the underlying
tool functionality.

IDLitUI A link between the underlying functionality
of an iTool and the IDL widget interface.

IDLitVisualization The basis for all iTool visualizations. All
visualization components subclass from this
class.

IDLitWindow The basis for all iTool visualization
windows. All iTool visualization windows
subclass from this class.

New Object Class Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 45
New IDL Object Properties

The following table describes new and updated properties to IDL objects.

IDLgrAxis

IDLitWriter The definition of the interface and the
process used to construct file writers for the
iTools framework. When a new file writer is
constructed for the iTools system, a new
class is subclassed from this IDLitWriter
class.

IDLjavaObject An IDL object encapsulating a Java object.
IDL provides data type and other translation
services, allowing IDL programs to access
the Java object’s methods and properties
using standard IDL syntax.

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.

New Object Class Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

46 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 47
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

48 Chapter 1: Overview of New Features in IDL 6.0
REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrAxis, the available properties and their
iTool data types are:

• COLOR (color)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• DIRECTION (enumerated list)

• EXACT (Boolean)

• EXTEND (Boolean)

• GRIDSTYLE (linestyle)

• HIDE (Boolean)

• LOG (Boolean)

• MAJOR (integer)

• MINOR (integer)

• NOTEXT (Boolean)

• PALETTE (user-defined)

• SUBTICKLEN (float)

• TEXTPOS (user-defined)

• THICK (thickness)

• TICKDIR (enumerated list)

• TICKINTERVAL (float)

• TICKLAYOUT (enumerated list)

• TICKLEN (float)

• TICKUNITS (string)

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 49
IDLgrBuffer

IDLgrClipboard

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrBuffer, the available properties and
their iTool data types are:

• COLOR_MODEL (enumerated list)

• N_COLORS (integer)

• PALETTE (user-defined)

• QUALITY (enumerated list)

• RESOLUTION (user-defined)

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrClipboard, the available properties
and their iTool data types are:

• COLOR_MODEL (enumerated list)

• N_COLORS (integer)

• PALETTE (user-defined)

• QUALITY (enumerated list)

• RESOLUTION (user-defined)
What’s New in IDL 6.0 New and Enhanced IDL Objects

50 Chapter 1: Overview of New Features in IDL 6.0
IDLgrContour

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 51
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

52 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 53
REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrContour, the available properties and
their iTool data types are:

• ANISOTROPY (user-defined)

• C_COLOR (user-defined)

• C_FILL_PATTERN (user-defined)

• C_LINESTYLE (user-defined)

• C_THICK (user-defined)

• C_VALUE (user-defined)

• COLOR (color)

• DEPTH_OFFSET (integer)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• DOWNHILL (enumerated list)

• FILL (Boolean)

• HIDE (Boolean)

• MAX_VALUE (float)

• MIN_VALUE (float)

• N_LEVELS (integer)

• PALETTE (user-defined)

• PLANAR (enumerated list)

• SHADING (enumerated list)

• TICKINTERVAL (float)

• TICKLEN (float)

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

54 Chapter 1: Overview of New Features in IDL 6.0
IDLgrImage

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 55
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

56 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrImage, the available properties and their
iTool data types are:

• BLEND_FUNCTION (user-defined)

• CHANNEL (integer)

• COLOR (color)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• DIMENSIONS (user-defined)

• GREYSCALE (Boolean)

• HIDE (Boolean)

• INTERLEAVE (enumerated list)

• INTERPOLATE (enumerated list)

• LOCATION (user-defined)

• ORDER (enumerated list)

• PALETTE (user-defined)

• SUB_RECT (user-defined)

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 57
IDLgrLight

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrLight, the available properties and
their iTool data types are:

• ATTENUATION (user-defined)

• COLOR (color)

• CONEANGLE (integer)

• DIRECTION (user-defined)

• FOCUS (float)

• HIDE (Boolean)

• INTENSITY (float)

• LOCATION (user-defined)

• PALETTE (user-defined)

• TYPE (enumerated list)
What’s New in IDL 6.0 New and Enhanced IDL Objects

58 Chapter 1: Overview of New Features in IDL 6.0
IDLgrModel

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing all objects contained in this
model. Set this property to 2 to explicitly enable
depth testing for all objects contained in this
model. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
This value may be overridden by individual models
or objects contained in this model.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 59
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS.
The graphics device compares the object’s depth at
a particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled). This value
may be overridden by individual models or objects
contained in this model.

Set this property to any of the following values to
use the desired function while drawing all objects
contained in this model.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

60 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while drawing the objects contained in this
model. Set this property to 2 to explicitly enable
depth writing for the objects contained in this
model. Disabling depth writing allows an object to
be overdrawn by other objects, even if the object is
located in front of them.This value may be
overridden by individual models or objects
contained in this model.

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrModel, the available properties and their
iTool data types are:

• CLIP_PLANES (user-defined)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• HIDE (Boolean)

• LIGHTING (enumerated list)

• SELECT_TARGET (Boolean)

• TRANSFORM (user-defined)

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 61
IDLgrPlot

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
What’s New in IDL 6.0 New and Enhanced IDL Objects

62 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in the
depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 63
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly when
creating iTools. By default, no properties are
registered.

For IDLgrPlot, the available properties and their
iTool data types are:

• COLOR (color)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• HIDE (Boolean)

• HISTOGRAM (Boolean)

• LINESTYLE (linestyle)

• MAX_VALUE (float)

• MIN_VALUE (float)

• NSUM (integer)

• PALETTE (user-defined)

• POLAR (Boolean)

• THICK (thickness)

• VERT_COLORS (user-defined)

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

64 Chapter 1: Overview of New Features in IDL 6.0
IDLgrPolygon

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 65
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

66 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 67
REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrPolygon, the available properties and
their iTool data types are:

• BOTTOM (color)

• COLOR (color)

• DEPTH_OFFSET (integer)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• HIDDEN_LINE (Boolean)

• HIDE (Boolean)

• LINESTYLE (linestyle)

• PALETTE (user-defined)

• REJECT (enumerated list)

• SHADING (enumerated list)

• STYLE (enumerated list)

• TEXTURE_INTERP (enumerated list)

• TEXTURE_MAP (user-defined)

• THICK (thickness)

• VERT_COLORS (user-defined)

• ZERO_OPACITY_SKIP (Boolean)

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

68 Chapter 1: Overview of New Features in IDL 6.0
IDLgrPolyline

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 69
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

70 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrPolyline, the available properties and
their iTool data types are:

• COLOR (color)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• HIDE (Boolean)

• LINESTYLE (linestyle)

• PALETTE (user-defined)

• SHADING (enumerated list)

• THICK (thickness)

• VERT_COLORS (user-defined)

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 71
IDLgrPrinter

IDLgrROI

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrPrinter, the available properties and
their iTool data types are:

• COLOR_MODEL (enumerated list)

• N_COLORS (integer)

• PALETTE (user-defined)

• QUALITY (enumerated list)

• RESOLUTION (float)

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
What’s New in IDL 6.0 New and Enhanced IDL Objects

72 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 73
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrROI, the available properties and their
iTool data types are:

• COLOR (color)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• HIDE (Boolean)

• LINESTYLE (linestyle)

• PALETTE (user-defined)

• THICK (thickness)

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

74 Chapter 1: Overview of New Features in IDL 6.0
IDLgrROIGroup

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 75
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the
object’s pixel is equal to the depth buffer’s
value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

76 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrROIGroup, the available properties and
their iTool data types are:

• COLOR (color)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• HIDE (Boolean)

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 77
IDLgrScene

IDLgrSurface

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrScene, the available properties and
their iTool data types are:

• COLOR (color)

• HIDE (Boolean)

• TRANSPARENT (Boolean)

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
What’s New in IDL 6.0 New and Enhanced IDL Objects

78 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the
object’s pixel is equal to the depth buffer’s
value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 79
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

80 Chapter 1: Overview of New Features in IDL 6.0
REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrSurface, the available properties and
their iTool data types are:

• BOTTOM (color)

• COLOR (color)

• DEPTH_OFFSET (integer)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• EXTENDED_LEGO (Boolean)

• HIDDEN_LINES (Boolean)

• HIDE (Boolean)

• LINESTYLE (linestyle)

• MAX_VALUE (float)

• MIN_VALUE (float)

• PALETTE (user-defined)

• SHADING (enumerated list)

• SHOW_SKIRT (Boolean)

• SKIRT (float)

• STYLE (enumerated list)

• TEXTURE_HIRES (Boolean)

• TEXTURE_INTERP (enumerated list)

• TEXTURE_MAP (user-defined)

• THICK (thickness)

• USE_TRIANGLES (enumerated list)

• VERT_COLORS (user-defined)

• ZERO_OPACITY_SKIP (Boolean)

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 81
IDLgrText

New Property Description

ALPHA_CHANNEL Set this property to a value in the range [0.0, 1.0]
(1.0 is the default) to draw the text foreground and
background with the specified blending factor. A
value of 1.0 draws the text opaquely without
blending the text with objects already drawn on the
destination. Edges of the glyphs are always
blended. A value of 0.0 draws no text at all. A value
in the middle of the range draws the text semi-
transparently, which provides a way of creating
labels that are visible while allowing features
blocked by the labels to still be seen. This property
is used only when the RENDER_METHOD in
effect is 0 (Texture).

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
What’s New in IDL 6.0 New and Enhanced IDL Objects

82 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in the
depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 83
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

FILL_BACKGROUND Set this property to zero (the default) to render the
text with a transparent bitmap background,
allowing graphics behind the text to show through
between the glyphs. Set this property to non-zero to
draw the text bitmap background with the color
specified by the FILL_COLOR property. This
property can only be used when
RENDER_METHOD is set to 0 (Texture).

FILL_COLOR Set this property to an RGB color vector or color
index value to specify that the text bitmap
background should be drawn using the specified
color. This property is used only when the
FILL_BACKGROUND property has a non-zero
value and the RENDER_METHOD in effect is 0
(Texture). Set this property to -1 (the default) to
specify that the text background should be drawn
using the current view background color.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

84 Chapter 1: Overview of New Features in IDL 6.0
KERNING Set this property to a non-zero value (the default is
zero) to enable kerning while rendering characters.
Kerning reduces the amount of space between
glyphs if the shape of each glyph allows it,
according to the font information stored in the
font’s file. For example, the letters "A" and "V"
placed together, "AV", contains space that can be
reduced by kerning. Enabling kerning may not
necessarily result in rendering glyphs more closely
together because some fonts do not contain the
required kerning information. This property is used
only when RENDER_METHOD is 0 (Texture).

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 85
REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly when
creating iTools. By default, no properties are
registered.

For IDLgrText, the available properties and their
iTool data types are:

• ALIGNMENT (float)

• ALPHA_CHANNEL (float)

• BASELINE (user-defined)

• COLOR (color)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• FILL_BACKGROUND (Boolean)

• FILL_COLOR (color)

• HIDE (Boolean)

• KERNING (Boolean)

• LOCATIONS (user-defined)

• ONGLASS (Boolean)

• PALETTE (user-defined)

• RECOMPUTE_DIMENSIONS (enumerated
list)

• RENDER_METHOD (enumerated list)

• STRINGS (user-defined)

• UPDIR (user-defined)

• VERTICAL_ALIGNMENT (float)

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

86 Chapter 1: Overview of New Features in IDL 6.0
RENDER_METHOD Set this property to one of the following values:

• 0 (zero) TEXTURE - IDL renders the text by
placing a bitmap representation of a glyph into
a texture map and then rendering a polygon
with the texture map. How the background
portions of the texture map are drawn and how
the entire texture map is blended into the scene
are controlled by the ALPHA_CHANNEL,
FILL_COLOR, and FILL_BACKGROUND
properties. Leaving these three properties set to
their default values produces a result that
closely approximates the TRIANGLES
rendering method. One important difference is
that the glyph bitmaps are generated by the
FreeType font rendering library, producing
glyphs that are more accurately rendered and
anti-aliased than those drawn with the
TRIANGLES method. The TEXTURE method
cannot be used on indexed color destinations.
The text is rendered with the TRIANGLES
method if the destination uses indexed color.

• 1 (one) TRIANGLES - IDL renders the text by
tessellating the glyph outline into a set of small
triangles that are then drawn to produce the
solid glyph. IDL also draws a blended line
around the edge of the glyph to approximate
anti-aliasing. This setting used to be the default
behavior for IDL versions prior to IDL 6.0.

Note - If IDLgrClipboard or IDLgrPrinter is drawn
in vector mode (VECTOR = 1), any IDLgrText
objects in the display are drawn as if the
RENDER_METHOD property was set to 1
(TRIANGLES).

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 87
IDLgrView

IDLgrViewgroup

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrView, the available properties and
their iTool data types are:

• COLOR (color)

• DEPTH_CUE (user-defined)

• DOUBLE (Boolean)

• EYE (float)

• HIDE (enumerated list)

• LOCATION (user-defined)

• PROJECTION (enumerated list)

• TRANSPARENT (Boolean)

• UNITS (enumerated list)

• VIEWPLANE_RECT (user-defined)

• ZCLIP (user-defined)

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrViewgroup, the available properties
and their iTool data types are:

• HIDE (Boolean)
What’s New in IDL 6.0 New and Enhanced IDL Objects

88 Chapter 1: Overview of New Features in IDL 6.0
IDLgrVolume

New Property Description

DEPTH_TEST_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 89
DEPTH_TEST_FUNCTION Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set a depth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer
is updated (if depth writing is enabled).

Set this property to any of the following values to
use the desired function while rendering this
object.

• 0 = INHERIT - use the test function set for the
parent model or view.

• 1 = NEVER - never passes.

• 2 = LESS - passes if the depth of the object’s
pixel is less than the depth buffer’s value.

• 3 = EQUAL - passes if the depth of the object’s
pixel is equal to the depth buffer’s value.

• 4 = LESS OR EQUAL - passes if the depth of
the object’s pixel is less than or equal to the
depth buffer’s value.

• 5 = GREATER - passes if the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

• 6 = NOT EQUAL - passes if the depth of the
object’s pixel is not equal to the depth buffer’s
value.

• 7 = GREATER OR EQUAL - passes if the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

• 8 = ALWAYS - always passes

Note - Less means closer to the viewer.

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

90 Chapter 1: Overview of New Features in IDL 6.0
DEPTH_WRITE_DISABLE Set this property to 0 (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 91
REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrVolume, the available properties (and
their iTool data types) are:

• AMBIENT (color)

• BOUNDS (user-defined)

• COMPOSITE_FUNCTION (enumerated list)

• CUTTING_PLANES (user-defined)

• DEPTH_CUE (user-defined)

• DEPTH_TEST_DISABLE (enumerated list)

• DEPTH_TEST_FUNCTION (enumerated list)

• DEPTH_WRITE_DISABLE (enumerated list)

• HIDE (enumerated list)

• HINTS (enumerated list)

• INTERPOLATE (enumerated list)

• LIGHTING_MODEL (Boolean)

• PALETTE (user-defined)

• RENDER_STEP (user-defined)

• TWO_SIDED (enumerated list)

• ZBUFFER (Boolean)

• ZERO_OPACITY_SKIP (Boolean)

New Property Description
What’s New in IDL 6.0 New and Enhanced IDL Objects

92 Chapter 1: Overview of New Features in IDL 6.0
IDLgrVRML

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrVRML, the available properties and
their iTool data types are:

• COLOR_MODEL (enumerated list)

• N_COLORS (integer)

• PALETTE (user-defined)

• QUALITY (enumerated list)

• RESOLUTION (user-defined)
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 93
IDLgrWindow

New Property Description

REGISTER_PROPERTIES Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrWindow, the available properties
and their iTool data types are:

• COLOR_MODEL (enumerated list)

• CURRENT_ZOOM (float)

• DIMENSIONS (user-defined)

• DISPLAY_NAME (string)

• LOCATION (user-defined)

• N_COLORS (integer)

• PALETTE (user-defined)

• QUALITY (enumerated list)

• RENDERER (enumerated list)

• RESOLUTION (float)

• RETAIN (enumerated list)

• TITLE (string)

• UNITS (enumerated list)

• VIRTUAL_DIMENSIONS (user-defined)

• VISIBLE_LOCATION (user-defined)

VIRTUAL_DIMENSIONS Set this property to a two-element vector,
[width, height], specifying the dimensions of
the virtual canvas for this window. The default
is [0, 0], indicating that the virtual canvas
dimensions should match the visible
dimensions (as specified via the
DIMENSIONS keyword).
What’s New in IDL 6.0 New and Enhanced IDL Objects

94 Chapter 1: Overview of New Features in IDL 6.0
IDL Object Property Enhancements

The following table describes updated properties to IDL object classes.

Note
The following table contains an update to the documentation for the
RECOMPUTE_DIMENSIONS property of the IDLgrText object class. This
property in IDL 6.0 has not functionally changed from previous versions of IDL.

VISIBLE_LOCATION Set this property to a two-element vector,
[x, y], specifying the lower left location of the
visible portion of the canvas (relative to the
virtual canvas).

New Property Description
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 95
IDLgrText

Item Description

RECOMPUTE_DIMENSIONS Set this property to one of the following values:

• 0 = The physical size of the text is affected
by model and view transforms. The size of
the text in terms of data units is obtained
from CHAR_DIMENSIONS. Since the
character dimensions are specified in data
units, the text will maintain the data space
size specified by CHAR_DIMENSIONS as
the transforms change. In other words, the
physical text size changes along with other
primitives. If the value of this property is
[0, 0], the text font’s point size is used to
compute the physical size of the text in
terms of data units using the transforms in
effect for the first draw. This setting is the
default value for this property.

• 1 = The physical size of the text is only
affected by model transforms. The
CHAR_DIMENSIONS property is
ignored. The size of the text is computed
from the font’s point size the first time it is
drawn, and IDL does not try to keep the
size of the text constant with respect to
changes in the model transforms.

• 2 = The physical size of the text is held
constant, even as the model and view
change. The CHAR_DIMENSIONS
property is ignored and the text is always
drawn with a physical size equal to the text
font’s point size. IDL adjusts its internal
text transforms to maintain the physical
size of the text.
What’s New in IDL 6.0 New and Enhanced IDL Objects

96 Chapter 1: Overview of New Features in IDL 6.0
IDL Object Method Enhancements

The following table describes new and updated keywords and arguments to IDL
object methods.

IDLanROI::ComputeMask

Item Description

PIXEL_CENTER Set this keyword to a 2-element vector, [x, y],
to indicate where the lower-left mask pixel is
centered relative to a Cartesian grid. The
default value is [0.0, 0.0], indicating that the
lower-left pixel is centered at [0.0, 0.0].
New and Enhanced IDL Objects What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 97
New and Enhanced IDL Routines

This section describes the following:

• New IDL Routines

• IDL Routine Enhancements

New IDL Routines

The following is a list of new functions and procedures added to IDL in this release.

New Routine Description

ARRAY_INDICES Converts one-dimensional subscripts of an
array into corresponding multi-dimensional
subscripts.

FILE_BASENAME Returns the basename of a file path. The
basename is the final rightmost segment of the
file path.

FILE_DIRNAME Returns the dirname of a file path. The dirname
is all of the file path except for the final
rightmost segment of the file path.

ICONTOUR Creates an iTool and associated user interface
(UI) configured to display and manipulate
contour data.

IDL_VALIDNAME Determines whether a string may be used as a
valid IDL variable name or structure tag name.

IDLITSYS_CREATETOOL Creates an instance of the specified tool
registered within the iTools system.

IIMAGE Creates an iTool and associated user interface
(UI) configured to display and manipulate
image data.

IPLOT Creates an iTool and associated user interface
(UI) configured to display and manipulate plot
data.
What’s New in IDL 6.0 New and Enhanced IDL Routines

98 Chapter 1: Overview of New Features in IDL 6.0
ISURFACE Creates an iTool and associated user interface
(UI) configured to display and manipulate
surface data.

ITCURRENT Set the current tool in the iTools system.

ITDELETE Deletes a tool in the iTools system.

ITGETCURRENT Gets the identifier of the current tool in the
iTools system.

ITREGISTER Registers tool object classes with the iTools
system.

ITRESET Resets the iTools session.

IVOLUME Creates an iTool and associated user interface
(UI) configured to display and manipulate
volume data.

LOGICAL_AND Performs a logical AND operation on its
arguments, which can be scalar or array.

LOGICAL_OR Performs a logical OR operation on its
arguments, which can be scalar or array.

LOGICAL_TRUE Determines whether its argument, which can be
scalar or array, is non-zero (or non-NULL).

PATH_CACHE Controls IDL’s path caching mechanism.

WIDGET_PROPERTYSHEET Creates a property sheet widget, which exposes
the properties of an IDL object in a graphical
interface.

New Routine Description
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 99
IDL Routine Enhancements

The following is a list of new and updated keywords, arguments, and/or return values
to existing IDL routines.

CURVEFIT

DIALOG_PICKFILE

Keyword or item Description

FITA Set this keyword to a vector, with as many
elements as A, which contains a zero for each
fixed parameter, and a non-zero value for elements
of A to fit. If not supplied, all parameters are taken
to be non-fixed.

STATUS Possible return values for STATUS are:

• 0 = The computation was successful.

• 1 = The computation failed. Chi-square was
increasing without bounds.

• 2 = The computation failed to converge in
ITMAX iterations.

Keyword or item Description

DEFAULT_EXTENSION Set this keyword to a scalar string
representing the default extension to be
appended onto the returned file name or
names. If the returned file name already has
an extension, then the value set for this
keyword is not appended. The value for this
keyword should not include the period (.).

Note - This keyword only applies to file
names typed into the dialog. This keyword
does not apply to files selected within the
dialog.
What’s New in IDL 6.0 New and Enhanced IDL Routines

100 Chapter 1: Overview of New Features in IDL 6.0
FILE_LINES

OVERWRITE_PROMPT If this keyword is set along with the WRITE
keyword and the user selects a file that
already exists, then a dialog will be
displayed asking if the user wants to replace
the existing file or not. For multiple
selections, the user is prompted separately
for each file. If the user selects No then the
user is returned to the file selection dialog; if
the user selects Yes then the selection is
allowed. This keyword has no effect unless
the WRITE keyword is also set.

Keyword or item Description

COMPRESS If this keyword is set, FILE_LINES assumes that
the files specified in Path contain data compressed
in the standard GZIP format, and decompresses the
data in order to count the number of lines. See the
description of the COMPRESS keyword to the
OPEN procedure for additional information.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 101
GAUSSFIT

HELP

Keyword or item Description

MEASURE_ERRORS Set this keyword to a vector containing standard
measurement errors for each point in the Y input
argument. This vector must be the same length as
the input arguments, X and Y.

Note - For Gaussian errors (for example,
instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each
point in Y. For Poisson or statistical weighting,
MEASURE_ERRORS should be set to SQRT(Y).

Keyword or item Description

PATH_CACHE Set this keyword to display a list of directories currently
included in the IDL path cache, along with the number of
.pro or .sav files found in those directories. See
“PATH_CACHE” in the IDL Reference Guide manual for
details.
What’s New in IDL 6.0 New and Enhanced IDL Routines

102 Chapter 1: Overview of New Features in IDL 6.0
INTERVAL_VOLUME

Keyword or item Description

PROGRESS_CALLBACK Set this keyword to a scalar string containing the
name of the IDL function that the
INTERVAL_VOLUME procedure calls at
PROGRESS_PERCENT intervals as it generates
the interval volume.

The PROGRESS_CALLBACK function returns a
zero to signal INTERVAL_VOLUME to stop
generating the interval volume. This causes
INTERVAL_VOLUME to return a single vertex
and a connectivity array of [-1], which specifies an
empty mesh. If the callback function returns any
non-zero value, INTERVAL_VOLUME continues
to generate the interval volume.

The PROGRESS_CALLBACK function must
specify a single argument, Percent, which
INTERVAL_VOLUME sets to an integer between
0 and 100, inclusive.

The PROGRESS_CALLBACK function may
specify an optional USERDATA keyword
parameter, which INTERVAL_VOLUME sets to
the variable provided in the
PROGRESS_USERDATA keyword.

The following code shows an example of a
progress callback function:

FUNCTION myProgressCallback, $
percent, USERDATA = myStruct

oProgressBar = myStruct.oProgressBar

; This method updates the progress bar
; graphic and returns TRUE if the user
; has NOT pressed the cancel button.
keepGoing = oProgressBar -> $

UpdateProgressValue(percent)

RETURN, keepGoing

END
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 103
PROGRESS_METHOD Set this keyword to a scalar string containing the
name of a function method that the
INTERVAL_VOLUME procedure calls at
PROGRESS_PERCENT intervals as it generates
the interval volume. If this keyword is set, then the
PROGRESS_OBJECT keyword must be set to an
object reference that is an instance of a class that
defines the specified method.

The PROGRESS_METHOD function method
callback has the same specification as the callback
described in the PROGRESS_CALLBACK
keyword, except that it is defined as an object class
method:

FUNCTION myClass::myProgressCallback, $
percent, USERDATA = myStruct

PROGRESS_OBJECT Set this keyword to an object reference that is an
instance of a class that defines the method
specified with the PROGRESS_METHOD
keyword. If this keyword is set, then the
PROGRESS_METHOD keyword must also be set.

PROGRESS_PERCENT Set this keyword to a scalar in the range [1, 100] to
specify the interval between invocations of the
callback function. The default value is 5 and IDL
silently clamps other values to the range [1, 100].

For example, a value of 5 (the default) specifies
INTERVAL_VOLUME will call the callback
function when the interval volume process is 0%
complete, 5% complete, 10% complete, ..., 95%
complete, and 100% complete.

PROGRESS_USERDATA Set this property to any IDL variable that
INTERVAL_VOLUME passes to the callback
function in the callback function’s USERDATA
keyword parameter. If this keyword is specified,
then the callback function must be able to accept
keyword parameters.

Keyword or item Description
What’s New in IDL 6.0 New and Enhanced IDL Routines

104 Chapter 1: Overview of New Features in IDL 6.0
ISOSURFACE

Keyword or item Description

PROGRESS_CALLBACK Set this keyword to a scalar string containing
the name of the IDL function that
ISOSURFACE calls at PROGRESS_PERCENT
intervals as it generates the isosurface.

The PROGRESS_CALLBACK function returns
a zero to signal ISOSURFACE to stop
generating the isosurface. This causes
ISOSURFACE to return a single vertex and a
connectivity array of [-1], which specifies an
empty polygon. If the callback function returns
any non-zero value, ISOSURFACE continues to
generate the isosurface.

The PROGRESS_CALLBACK function must
specify a single argument, Percent, which
ISOSURFACE sets to an integer between 0 and
100, inclusive.

The PROGRESS_CALLBACK function may
specify an optional USERDATA keyword
parameter, which ISOSURFACE sets to the
variable provided in the
PROGRESS_USERDATA keyword.

The following code shows an example of a
progress callback function:

FUNCTION myProgressCallback, percent,$
USERDATA = myStruct

oProgressBar = myStruct.oProgressBar

; This method updates the progress bar
; graphic and returns TRUE if the user
has
; NOT pressed the cancel button.
keepGoing = oProgressBar -> $

UpdateProgressValue(percent)

RETURN, keepGoing

END
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 105
PROGRESS_METHOD Set this keyword to a scalar string containing
the name of a function method that
ISOSURFACE calls at PROGRESS_PERCENT
intervals as it generates the isosurface. If this
keyword is set, then the PROGRESS_OBJECT
keyword must be set to an object reference that
is an instance of a class that defines the
specified method.

The PROGRESS_METHOD function method
callback has the same specification as the
callback described in the
PROGRESS_CALLBACK keyword, except
that it is defined as an object class method:

FUNCTION myClass::myProgressCallback,
$

percent, USERDATA = myStruct

PROGRESS_OBJECT Set this keyword to an object reference that is an
instance of a class that defines the method
specified with the PROGRESS_METHOD
keyword. If this keyword is set, then the
PROGRESS_METHOD keyword must also be
set.

PROGRESS_PERCENT Set this keyword to a scalar in the range [1, 100]
to specify the interval between invocations of
the callback function. The default value is 5 and
IDL silently clamps other values to the range [1,
100].

For example, a value of 5 (the default) specifies
ISOSURFACE will call the callback function
when the isosurface process is 0% complete,
5% complete, 10% complete, ..., 95% complete,
and 100% complete.

Keyword or item Description
What’s New in IDL 6.0 New and Enhanced IDL Routines

106 Chapter 1: Overview of New Features in IDL 6.0
LMGR

PROGRESS_USERDATA Set this property to any IDL variable that
ISOSURFACE passes to the callback function
in the callback function’s USERDATA keyword
parameter. If this keyword is specified, then the
callback function must be able to accept
keyword parameters.

Keyword or item Description

VM Set this keyword to test whether the current IDL session is
running in Virtual Machine mode. Virtual Machine
applications do not provide access to the IDL Command
Line.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 107
MESH_DECIMATE

Keyword or item Description

PROGRESS_CALLBACK Set this keyword to a scalar string containing the
name of the IDL function that MESH_DECIMATE
calls at PROGRESS_PERCENT intervals as it
decimates the polygonal mesh.

The PROGRESS_CALLBACK function returns a
zero to signal MESH_DECIMATE to stop
decimating, which causes MESH_DECIMATE to
return the partially decimated mesh. If the callback
function returns a non-zero, MESH_DECIMATE
continues to decimate the mesh.

The PROGRESS_CALLBACK function must
specify a single argument, Percent, which
MESH_DECIMATE sets to an integer between 0
and 100, inclusive.

The PROGRESS_CALLBACK function may
specify an optional USERDATA keyword, which
MESH_DECIMATE sets to the variable provided in
the PROGRESS_USERDATA keyword.

The following code show an example of a progress
callback function:

FUNCTION myProgressCallback, percent,$
USERDATA = myStruct

oProgressBar = myStruct.oProgressBar

; This method updates the progress bar
; graphic and returns TRUE if the user has
; NOT pressed the cancel button.
keepGoing = oProgressBar -> $

UpdateProgressValue(percent)

RETURN, keepGoing

END
What’s New in IDL 6.0 New and Enhanced IDL Routines

108 Chapter 1: Overview of New Features in IDL 6.0
PROGRESS_METHOD Set this keyword to a scalar string containing the
name of a function method that MESH_DECIMATE
calls at PROGRESS_PERCENT intervals as it
decimates the mesh. If this keyword is set, then the
PROGRESS_OBJECT keyword must be set to an
object reference that is an instance of a class that
defines the specified method.

The PROGRESS_METHOD function method
callback has the same specification as the callback
described in the PROGRESS_CALLBACK
keyword, except that it is defined as an object class
method:

FUNCTION myClass::myProgressCallback, $
percent, USERDATA = myStruct

PROGRESS_OBJECT Set this keyword to an object reference that is an
instance of a class that defines the method specified
with the PROGRESS_METHOD keyword. If this
keyword is set, then the PROGRESS_METHOD
keyword must also be set.

PROGRESS_PERCENT Set this keyword to a scalar in the range [1, 100] to
specify the interval between invocations of the
callback function. The default value is 5 and IDL
silently clamps other values to the range [1, 100].

For example, a value of 5 (the default) specifies
MESH_DECIMATE will call the callback function
when the decimation is 0% complete, 5% complete,
10% complete, ..., 95% complete, and 100%
complete.

PROGRESS_USERDATA Set this property to any IDL variable that
MESH_DECIMATE passes to the callback function
in the callback function’s USERDATA keyword
parameter. If this keyword is specified, then the
callback function must be able to accept keyword
parameters.

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 109
MESSAGE

RESOLVE_ALL

Keyword or item Description

REISSUE_LAST Set this keyword to reissue the last error issued by IDL. By
using this keyword in conjunction with the CATCH
procedure, your code can catch an error caused by called
code, perform recovery actions, and issue the error
normally.

Note - If this keyword is specified, no plain arguments or
other keywords may be specified. Combining the
REISSUE_LAST keyword with arguments or other
keywords will cause IDL to issue an error.

Keyword or item Description

CLASS Set this keyword to a string or string array containing object
class names.

RESOLVE_ALL’s rules for finding uncompiled functions
and procedures are not able to find object definitions or
methods, because those items are not known to IDL until
the object classes are actually instantiated and the methods
called. However, if the CLASS keyword is set,
RESOLVE_ALL will ensure that the *__define.pro files
for the specified classes and their superclasses are compiled
and executed. RESOLVE_ALL then locates all methods for
the specified classes and their superclasses, and makes sure
they are also compiled.
What’s New in IDL 6.0 New and Enhanced IDL Routines

110 Chapter 1: Overview of New Features in IDL 6.0
SHMMAP

STRSPLIT

Keyword or item Description

FILENAME The description of this keyword has been updated with the
following text:

By default, files are mapped as shared, meaning that all
processes that map the file will see any changes made. All
changes are written back to the file by the operating system
and become permanent. You must have write access to the
file in order to map it as shared.

To change the default behavior, set the PRIVATE keyword.
When a file is mapped privately, changes made to the file
are not written back to the file by the operating system, and
are not visible to any other processes. You do not need write
access to a file in order to map it privately — read access is
sufficient.

PRIVATE The description of this keyword has been updated with the
following text:

Mapping a file as shared requires that you have write access
to the file, but a private mapping requires only read access.
Use PRIVATE to map files for which you do not have write
access, or when you want to ensure that the original file will
not be altered by your process.

Keyword or item Description

COUNT Set this keyword to a named variable to receive the number
of matched substrings returned by STRSPLIT. This value
will be 0 in the case where either or both of the String and
Pattern arguments is NULL. Otherwise, it is the number of
elements in the result, equivalent to calling the
N_ELEMENTS function.
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 111
WIDGET_BUTTON

Keyword or item Description

PUSHBUTTON_EVENTS Set this keyword to cause button events to be
issued for the widget when the left mouse button is
pressed and released, or when the spacebar is
pressed and released.

Note - This keyword has no effect on exclusive or
non-exclusive buttons.

When this keyword is not set, pressing and
releasing either the left mouse button or the
spacebar (if the button is in focus) generates a
single button event, with the SELECT field set
equal to 1. When this keyword is set:

• Pressing the left mouse button generates a
button event with the SELECT field set equal
to 1.

• Releasing the left mouse button generates a
button event with the SELECT field set equal
to 0.

• Pressing the spacebar generates a button event
with the SELECT field set equal to 1.

• Releasing the spacebar generates a button
event with the SELECT field set equal to 0.

• Pressing and holding the spacebar generates a
series of button events, with the value of the
SELECT field alternating between 1 and 0.
The rate at which events are generated is
governed by the key-repeat settings of the
operating system.

Note - The spacebar only causes a button event if
the button is in focus, which usually implies the
button has been clicked on previously.
What’s New in IDL 6.0 New and Enhanced IDL Routines

112 Chapter 1: Overview of New Features in IDL 6.0
WIDGET_CONTROL

Keyword or item Description

PUSHBUTTON_EVENTS This keyword applies to widgets created with the
WIDGET_BUTTON function.

Set this keyword to a non-zero value to enable
pushbutton events for the widget specified by
Widget_ID. Set the keyword to 0 to disable
pushbutton events for the specified widget.

REFRESH_PROPERTY This keyword applies to widgets created with the
WIDGET_PROPERTYSHEET function. Set this
keyword to a property identifier or array of property
identifiers to have just those properties synchronized
with their values in the component(s). Recall that
property identifiers are strings that uniquely
determine a property. The keyword can also be set to
a numeric value — non-zero values refresh all
properties. The REFRESH_PROPERTY keyword
also updates with respect to a property's sensitivity
and visibility.

When all properties need synchronizing, it is more
efficient to use /REFRESH_PROPERTY than
WIDGET_CONTROL’s SET_VALUE keyword to
reload the property sheet.
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 113
WIDGET_INFO

Keyword or item Description

COMPONENT This keyword applies to widgets created with the
WIDGET_PROPERTYSHEET function. Set this
keyword to an object reference to indicate which
object to query. This is most useful when the
property sheet references multiple objects. If this
keyword is not specified, the first (possibly only)
object is queried.

PROPERTY_VALID This keyword applies to widgets created with the
WIDGET_PROPERTYSHEET function. Set this
keyword to a string to determine if the string
identifies a property. Valid identifiers return 1 and
invalid strings return 0. Comparisons are case
insensitive.

Operations are performed on properties through
unique identifiers. This operation is not required
when processing a change event because the
identifier returned in the event structure can be
assumed to be correct.
What’s New in IDL 6.0 New and Enhanced IDL Routines

114 Chapter 1: Overview of New Features in IDL 6.0
PROPERTY_VALUE This keyword applies to widgets created with the
WIDGET_PROPERTYSHEET function. Retrieves
the value of an identified property from a property
sheet and returns it as a temporary IDL variable.
Set this keyword to a string that is a valid property
identifier to return the value of the specified
property. This value can then be used to set the
actual value of the property — the property sheet
does not automatically do this. When there are
multiple components, use the COMPONENT
keyword to indicate which component should be
queried. The match is case insensitive. An invalid
identifier throws an error.

This keyword is very often used in response to
property sheet change events. This is because the
property sheet does not change the underlying
component; it only informs the widget program
which of its own values have changed. The IDL
programmer can use PROPERTY_VALUE to
retrieve the user's desired value (as cached in the
property sheet) and then apply it to the component.
The following snippet of code handles property
sheet change events:

PRO prop_event, e

; get the value of e.component's
; property identified by e.identifier
value = WIDGET_INFO(e.id, $

COMPONENT = e.component, $
PROPERTY_VALUE = e.identifier)

; set the component's property's value
e.component -> SetPropertyByIdentifier, $

e.identifier, value

END

Keyword or item Description
New and Enhanced IDL Routines What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 115
PUSHBUTTON_EVENTS This keyword applies to widgets created with the
WIDGET_BUTTON function.

Set this keyword to return the pushbutton events
status for the widget specified by Widget_ID.
WIDGET_INFO returns 1 if pushbutton events are
currently enabled for the widget, or 0 otherwise.

Keyword or item Description
What’s New in IDL 6.0 New and Enhanced IDL Routines

116 Chapter 1: Overview of New Features in IDL 6.0
Routines Obsoleted in IDL 6.0

The following routines were present in IDL Version 5.6 but became obsolete in
Version 6.0. These routines have been replaced with a new keyword to an existing
routine or by a new routine that offers enhanced functionality. These obsoleted
routines should not be used in new IDL code.

Routine Replaced By

LIVE_CONTOUR ICONTOUR

LIVE_CONTROL iTools system

LIVE_DESTROY iTools system

LIVE_EXPORT iTools system

LIVE_IMAGE IIMAGE

LIVE_INFO iTools system

LIVE_LINE iTools system

LIVE_LOAD iTools system

LIVE_OPLOT IPLOT

LIVE_PLOT IPLOT

LIVE_PRINT iTools system

LIVE_RECT iTools system

LIVE_STYLE iTools system

LIVE_SURFACE ISURFACE

LIVE_TEXT iTools system
Routines Obsoleted in IDL 6.0 What’s New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 117
Requirements for this Release

IDL 6.0 Requirements

Hardware Requirements for IDL 6.0

The following table describes the supported platforms and operating systems for IDL
6.0:

On platforms with both 32-bit and 64-bit support, both versions are installed, and the
64-bit version is the default. The 32-bit version can be run by specifying the -32
switch at the command line:

% idl -32

∗ The DXF file format and IDL DataMiner are not supported on 64-bit IDL
platforms.

Platform Vendor Hardware Operating
System

Supported
Versions

Windows Microsoft Intel x86 32-bit Windows NT [4.0], 2000, XP

Macintosh Apple G4 32-bit OS Mac OS X 10.2.x†

UNIX† Compaq Alpha 64-bit∗ Tru64 UNIX 5.1

HP PA-RISC 32-bit HP-UX 11.0

HP PA-RISC 64-bit∗ HP-UX 11.0

IBM RS/6000 32-bit AIX 5.1

IBM RS/6000 64-bit∗ AIX 5.1

Intel Intel x86 32-bit Linux Red Hat [7.1], 8, 9††

SGI Mips 32-bit IRIX 6.5.1

SGI Mips 64-bit* IRIX 6.5.1

SUN SPARC 32-bit Solaris 2 [8], 9

SUN SPARC 64-bit∗ Solaris 2 [8], 9

Table 1-1: Hardware Requirements for IDL 6.0.
What’s New in IDL 6.0 Requirements for this Release

118 Chapter 1: Overview of New Features in IDL 6.0
† For UNIX (including Mac OS X), the supported versions indicate that IDL was
either built on the lowest version listed or tested on that version. You can install and
run IDL on other versions that are binary compatible with those listed.

†† IDL 6.0 was built on the Linux 2.4 kernel with glibc 2.2 using Red Hat Linux
7.1. If your version of Linux is compatible with these, it is possible that you can
install and run IDL on your version.

[] When multiple supported versions are listed, the bracketed version represents the
operating system used to build IDL. Operating system versions that are binary
compatible with the build version should run IDL 6.0 without problems, but only the
versions listed in the table have been tested by RSI.

Software Requirements for IDL 6.0

The following table describes the software requirements for IDL 6.0:

Platform Software Requirements

Windows Internet Explorer 5.0 or higher.

Macintosh MacOSX X11 which can be obtained at
http://www.apple.com/macosx/x11.

Table 1-2: Software Requirements for IDL 6.0
Requirements for this Release What’s New in IDL 6.0

http://www.apple.com/macox/x11

Chapter 1: Overview of New Features in IDL 6.0 119
ION 2.0 Requirements

Hardware Requirements for ION 2.0

The following table describes the supported platforms and operating systems for ION
2.0:

† For UNIX, the supported versions indicate that ION was either built on the lowest
version listed or tested on that version. You can install and run ION on other versions
that are binary compatible with those listed.

†† ION 2.0 was built on the Linux 2.4 kernel with glibc 2.2 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run ION 2.0 on your version.

Web Servers

In order to use ION, you must install an HTTP Web server. ION has been tested with
the following Web server software:

• Apache Web Server version 2.0 or higher for Windows, Linux, and Solaris.

• Apache Web Server version 1.3.14 for IRIX. This version is included with the
IRIX operating system.

• Microsoft Internet Information Server (IIS) version 5.0 for Windows 2000
Server and version 5.1 for Windows XP Professional.

Platform Vendor Hardware Operating
System

Supported
Versions

Windows Microsoft Intel x86 32-bit Windows NT 4.0, 2000, XP

UNIX† Intel Intel x86 32-bit Linux Red Hat 7.1, 8, 9††

SGI Mips 32-bit IRIX 6.5.1

SUN SPARC 32-bit Solaris 2 8, 9

Table 1-3: Hardware Requirements for ION 2.0.
What’s New in IDL 6.0 Requirements for this Release

120 Chapter 1: Overview of New Features in IDL 6.0
If you do not already have Web server software, the IDL 6.0 CD-ROM contains the
following Apache Web Server software:

• Windows — Version 2.0.45

• Linux — Version 2.0.43

• Solaris — Version 2.0.43

• IRIX — Version 1.3.14

Note
For more information on Apache software for your platform, see
http://www.apache.org.

Web Browsers

ION 2.0 supports the HTTP 1.0 protocol. The following are provided as examples of
popular Web browsers that support HTTP 1.0:

• Netscape Navigator versions 4.7 and 6.0.

• Microsoft Internet Explorer versions 5.5 and 6.0.

Browsers differ in their support of HTML features. As with any Web application, you
should test your ION Script or Java application using Web browsers that anyone
accessing your application is likely to be using.

Java Virtual Machines

ION 2.0 supports the following Java Virtual Machines:

• Sun JVM 1.2, 1.3 and 1.4

• Microsoft JVM 5.x

The following are provided as examples of popular Web browsers that are shipped
with the above JVMs:

• Netscape Navigator versions 4.7 and 6.0.

• Microsoft Internet Explorer versions 5.5 and 6.0.

Browsers differ in their support of features. As with any Web application, you should
test your ION Java application using Web browsers that anyone accessing your
application is likely to be using.
Requirements for this Release What’s New in IDL 6.0

http://www.apache.org

Chapter 2:

New IDL Object
Classes
This chapter provides a list of new object classes introduced in IDL 6.0
List of New Object Classes 122
What’s New in IDL 6.0 121

122 Chapter 2: New IDL Object Classes
List of New Object Classes

The following object classes are new in IDL 6.0:

• IDLitCommand

• IDLitCommandSet

• IDLitComponent

• IDLitContainer

• IDLitData

• IDLitDataContainer

• IDLitDataOperation

• IDLitIMessaging

• IDLitManipulator

• IDLitManipulatorContainer

• IDLitManipulatorManager

• IDLitManipulatorVisual

• IDLitOperation

• IDLitParameter

• IDLitParameterSet

• IDLitReader

• IDLitTool

• IDLitUI

• IDLitVisualization

• IDLitWindow

• IDLitWriter

• IDLjavaObject

These 22 new object classes contain a combined total of more than 250 methods.
Because of the amount of new material, the detailed description on these classes and
their properties and methods are provided only in Chapter 7, “iTools Object Classes”
in the IDL Reference Guide manual and the IDL Online Help.
List of New Object Classes What’s New in IDL 6.0

Chapter 3:

New IDL Routines
This chapter describes routines introduced in IDL version 6.0.
ARRAY_INDICES 124
FILE_BASENAME 127
FILE_DIRNAME 130
ICONTOUR . 133
IDL_VALIDNAME 156
IDLITSYS_CREATETOOL 158
IIMAGE . 161
IPLOT . 176
ISURFACE . 194
ITCURRENT . 213

ITDELETE . 215
ITGETCURRENT 217
ITREGISTER . 219
ITRESET . 222
IVOLUME . 224
LOGICAL_AND 245
LOGICAL_OR . 247
LOGICAL_TRUE 249
PATH_CACHE . 251
WIDGET_PROPERTYSHEET 258
What’s New in IDL 6.0 123

124 Chapter 3: New IDL Routines
ARRAY_INDICES

The ARRAY_INDICES function converts one-dimensional subscripts of an array
into corresponding multi-dimensional subscripts.

This routine is written in the IDL language. Its source code can be found in the file
array_indices.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = ARRAY_INDICES(Array, Index)

Return Value

If Index is a scalar, returns a vector containing m dimensional subscripts, where m is
the number of dimensions of Array.

If Index is a vector containing n elements, returns an (m x n) array, with each row
containing the multi-dimensional subscripts corresponding to that index.

Arguments

Array

An array of any type.

Index

A scalar or vector containing the one-dimensional subscripts to be converted.

Keywords

None.
ARRAY_INDICES What’s New in IDL 6.0

Chapter 3: New IDL Routines 125
Examples

Example 1

This example finds the location of the maximum value of a random 10 by 10 array:

seed = 111
array = RANDOMU(seed, 10, 10)
mx = MAX(array, location)
ind = ARRAY_INDICES(array, location)
PRINT, ind, array[ind[0],ind[1]], $

FORMAT = '(%"Value at [%d, %d] is %f")'

IDL prints:

Value at [3, 6] is 0.973381

Example 2

This example routine locates the highest point in the example Maroon Bells data set
and places a flag at that point.

Enter the following code in the IDL editor:

PRO ExARRAY_INDICES

; Import Maroon Bells data.
file = FILEPATH('surface.dat', $

SUBDIRECTORY = ['examples', 'data'])
data = READ_BINARY(file, DATA_DIMS = [350, 450], $

DATA_TYPE = 2)

; Display data.
ISURFACE, data

; Calculate the value and one-dimensional
; array location of the highest point.
maxValue = MAX(data, maxPoint)

; Using ARRAY_INDICES to convert the one-
; dimensional array location to a two-
; dimensional aray location.
maxLocation = ARRAY_INDICES(data, maxPoint)

; Print the results.
PRINT, 'Highest Point Location: ', maxLocation
PRINT, 'Highest Point Value: ', maxValue

; Create flag for the highest point.
What’s New in IDL 6.0 ARRAY_INDICES

126 Chapter 3: New IDL Routines
x = maxLocation[0]
y = maxLocation[1]
z = maxValue
xFlag = [x, x, x + 50., x]
yFlag = [y, y, y + 50., y]
zFlag = [z, z + 1000., z + 750., z + 500.]

; Display flag at the highest point.
IPLOT, xFlag, yFlag, zFlag, /OVERPLOT

END

Save the code as ExARRAY_INDICES.pro, compile it and run it. The following
figure displays the output of this example:

For a better view of the flag, use the Rotate tool to rotate the surface.

Version History

Introduced: 6.0

See Also

MAX, MIN, WHERE

Figure 3-1: Maroon Bells Surface Plot with Flag at Highest Point Before Rotation
(Left) and After Rotation (Right)
ARRAY_INDICES What’s New in IDL 6.0

Chapter 3: New IDL Routines 127
FILE_BASENAME

The FILE_BASENAME function returns the basename of a file path. A file path is a
string containing one or more segments consisting of names separated by directory
delimiter characters (slash (/) under UNIX, or backslash (\) under Microsoft
Windows). The basename is the final rightmost segment of the file path; it is usually a
file, but can also be a directory name. See “Rules used by FILE_BASENAME” on
page 128 for additional information.

Note
FILE_BASENAME operates on strings based strictly on their syntax. The Path
argument need not refer to actual or existing files.

FILE_BASENAME is based on the standard UNIX basename(1) utility.

Note
To retrieve the leftmost portion of the file path (the dirname), use the
FILE_DIRNAME function.

Syntax

Result = FILE_BASENAME(Path [, RemoveSuffix] [, /FOLD_CASE])

Return Value

A scalar string or string array containing the basename for each element of the Path
argument.

Arguments

Path

A scalar string or string array containing paths for which the basename is desired.

Note
Under Microsoft Windows, the backslash (\) character is used to separate
directories within a path. For compatibility with UNIX, and general convenience,
the forward slash (/) character is also accepted as a directory separator in the Path
argument.
What’s New in IDL 6.0 FILE_BASENAME

128 Chapter 3: New IDL Routines
RemoveSuffix

An optional scalar string or 1-element string array specifying a filename suffix to be
removed from the end of the basename, if present.

Note
If the entire basename string matches the suffix, the suffix is not removed.

Keywords

FOLD_CASE

By default, FILE_BASENAME follows the case sensitivity policy of the underlying
operating system when attempting to match a string specified by the RemoveSuffix
argument. By default, matches are case sensitive on UNIX platforms, and case
insensitive on Microsoft Windows platforms. The FOLD_CASE keyword is used to
change this behavior. Set it to a non-zero value to cause FILE_BASENAME to do all
string matching case insensitively. Explicitly set FOLD_CASE equal to zero to cause
all string matching to be case sensitive.

Note
The value of the FOLD_CASE keyword is ignored if the RemoveSuffix argument is
not present.

Rules used by FILE_BASENAME

FILE_BASENAME makes a copy of the input file path string, then modifies the copy
according to the following rules:

• If Path is a NULL string, then FILE_BASENAME returns a NULL string.

• If Path consists entirely of directory delimiter characters, the result of
FILE_BASENAME is a single directory delimiter character.

• If there are any trailing directory delimiter characters, they are removed.

• Under Microsoft Windows, remove any of the following, if present:

• The drive letter and colon (for file paths of the form
c:\directory\file).

• The initial double-backslash and host name (for UNC file paths of the
form \\host\share\directory\file).
FILE_BASENAME What’s New in IDL 6.0

Chapter 3: New IDL Routines 129
• If any directory delimiter characters remain, all characters up to and including
the last directory delimiter are removed.

• If the RemoveSuffix argument is present, is not identical to the characters
remaining, and matches the suffix of the characters remaining, the suffix is
removed. Otherwise, the Result is not modified by this step. The case
sensitivity of the string comparison used in this step is controlled by the
FOLD_CASE keyword.

Examples

The following command prints the basename of an IDL .pro file, removing the
.pro suffix:

PRINT, FILE_BASENAME('/usr/local/rsi/idl/lib/dist.pro', '.pro')

IDL prints:

dist

Similarly, the following command prints the basenames of all .pro files in the lib
subdirectory of the IDL distribution that begin with the letter “I,” performing a case
insensitive match for the suffix:

PRINT, FILE_BASENAME(FILE_SEARCH(FILEPATH('lib')+'/i*.pro'),
'.pro', /FOLD_CASE)

Version History

Introduced: 6.0

See Also

FILE_DIRNAME, PATH_SEP, STREGEX, STRMID, STRPOS, STRSPLIT
What’s New in IDL 6.0 FILE_BASENAME

130 Chapter 3: New IDL Routines
FILE_DIRNAME

The FILE_DIRNAME function returns the dirname of a file path. A file path is a
string containing one or more segments consisting of names separated by directory
delimiter characters (slash (/) under UNIX, or backslash (\) under Microsoft
Windows). The dirname is all of the file path except for the final rightmost segment,
which is usually a file name, but can also be a directory name. See “Rules use by
FILE_DIRNAME” on page 131 for additional information.

Note
FILE_DIRNAME operates on strings based strictly on their syntax. The Path
argument need not refer to actual or existing files.

FILE_DIRNAME is based on the standard Unix dirname(1) utility.

Note
To retrieve the rightmost portion of the file path (the basename), use the
FILE_BASENAME function.

Syntax

Result = FILE_DIRNAME(Path [, /MARK_DIRECTORY])

Return Value

A scalar string or string array containing the dirname for each element of the Path
argument.

Note
By default, the dirname does not include a final directory separator character; this
behavior can be changed using the MARK_DIRECTORY keyword.

Note
On Windows platforms, the string returned by FILE_DIRNAME always uses the
backslash (\) as the directory separator character, even if the slash (/) was used in
the Path argument.
FILE_DIRNAME What’s New in IDL 6.0

Chapter 3: New IDL Routines 131
Arguments

Path

A scalar string or string array containing paths for which the dirname is desired.

Note
Under Microsoft Windows, the backslash (\) character is used to separate
directories within a path. For compatibility with UNIX, and general convenience,
the forward slash (/) character is also accepted as a directory separator in the Path
argument. However, all results produced by FILE_DIRNAME on Windows
platforms use the standard backslash for this purpose, regardless of the separator
character used in the input Path argument.

Keywords

MARK_DIRECTORY

Set this keyword to include a directory separator character at the end of the returned
directory name string. Including the directory character allows you to concatenate a
file name to the end of the directory name string without having to supply the
separator character manually. This is convenient for cross platform programming, as
the separator characters differ between operating systems.

Rules use by FILE_DIRNAME

FILE_DIRNAME makes a copy of the input path string, and then modifies the copy
according to the following rules:

• If Path is a NULL string, then FILE_DIRNAME returns a single dot (.)
character, representing the current working directory of the IDL process.

• Under Microsoft Windows, a file path can start with either of the following:

• A drive letter and a colon (for file paths of the form
c:\directory\file).

• An initial double-backslash and a host name (for UNC file paths of the
form \\host\share\directory\file).

If either of these are present in Path, they are considered to be part of the
dirname, and are copied to the result without interpretation by the remaining
steps below.
What’s New in IDL 6.0 FILE_DIRNAME

132 Chapter 3: New IDL Routines
• If Path consists entirely of directory delimiter characters, the result of
FILE_DIRNAME is a single directory delimiter character (prefixed by a
Windows drive letter and colon or a UNC prefix, if necessary).

• All characters to the right of the rightmost directory delimiter character are
removed.

• All trailing directory delimiter characters are removed.

• If the MARK_DIRECTORY keyword is set, a single directory delimiter
character is appended to the end.

Examples

The following statements print the directory in which IDL locates the file dist.pro
when it needs a definition for the DIST function. (DIST is part of the standard IDL
user library, included with IDL):

temp = DIST(4) ; Ensure that DIST is compiled
PRINT, FILE_DIRNAME((ROUTINE_INFO('DIST', $

/FUNCTION, /SCOURE)).path)

Depending on the platform and location where IDL is installed, IDL prints something
like:

/usr/local/rsi/idl/lib

Version History

Introduced: 6.0

See Also

FILE_BASENAME, PATH_SEP, STREGEX, STRMID, STRPOS, STRSPLIT
FILE_DIRNAME What’s New in IDL 6.0

Chapter 3: New IDL Routines 133
ICONTOUR

The ICONTOUR procedure creates an iTool and associated user interface (UI)
configured to display and manipulate contour data.

Note
If no arguments are specified, the ICONTOUR procedure creates an empty Contour
tool.

This routine is written in the IDL language. Its source code can be found in the file
icontour.pro in the lib/itools subdirectory of the IDL distribution.

Using Palettes

Contour colors can be specified in several ways. By default, all contour levels are
black. The COLOR keyword can be used to change the color of all contour levels.
For example, you can change contour levels to red by setting COLOR = [255, 0, 0].
Individual color levels can be specified when the iContour tool is in palette color
mode, which allows a color table to be used. You can activate the palette color mode
from the IDL Command Line by setting either of the RGB_TABLE or
RGB_INDICES keywords, or from the iContour tool’s property sheet by changing
the Use palette color setting to True.

Note
If you are not in the palette color mode, the colors of individual levels may be
modified in the contour level properties dialog. If you are in the palette color mode,
the ability to edit individual colors in the contour level properties dialog is disabled.
However, changing the Use palette color setting to False does not switch you
back to previously set colors. It simply converts the colors referenced by indices to
direct color values that can be individually modified. A common practice is to
switch to palette color mode, select a palette, then change Use palette color to
False. The colors of the palette are now loaded as individual contour colors that
can each be edited in the contour level properties dialog.

If the iContour tool is in palette color mode, a colorbar can be inserted through the
Insert menu. The colorbar displays a sample of the current palette associated with
the contour display. The data values of the axis of the colorbar are based on the data
range of the Z argument and the contour level values.
What’s New in IDL 6.0 ICONTOUR

134 Chapter 3: New IDL Routines
The minimum value of the colorbar axis represents the minimum of the data range.
The maximum value of the axis is the greater of than the maximum of the data range
and the highest contour level value.

Note
When IDL computes default contour levels, the highest contour level may be above
the maximum value of the data.

Syntax

ICONTOUR[, Z[, X, Y]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Contour Keywords: [, RGB_INDICES=vector of indices]
[, RGB_TABLE=byte array of 256 by 3 or 3 by 256 elements] [, ZVALUE=value]

Contour Object Keywords: [, AM_PM=vector of two strings]
[, ANISOTROPY=[x, y, z]] [, C_COLOR=color array]
[, C_FILL_PATTERN=array of IDLgrPattern objects]
[, C_LABEL_INTERVAL=vector] [, C_LABEL_NOGAPS=vector]
[, C_LABEL_OBJECTS=array of object references]
[, C_LABEL_SHOW=vector of integers] [, C_LINESTYLE=array of linestyles]
[, C_THICK=float array{each element 1.0 to 10.0}]
[, C_USE_LABEL_COLOR=vector of values]
[, C_USE_LABEL_ORIENTATION=vector of values]
[, C_VALUE=scalar or vector] [, CLIP_PLANES=array] [, COLOR=RGB vector]
[, DAYS_OF_WEEK=vector of seven strings] [, DEPTH_OFFSET=value]
[, /DOWNHILL] [, /FILL] [, /HIDE] [, LABEL_FONT=objref]
[, LABEL_FORMAT=string] [, LABEL_FRMTDATA=value]
[, LABEL_UNITS=string] [, MAX_VALUE=value] [, MIN_VALUE=value]
[, MONTHS=vector of 12 values] [, N_LEVELS=value] [, /PLANAR]
[, SHADE_RANGE=[min, max]] [, SHADING={0 |1}] [, TICKINTERVAL=value]
[, TICKLEN=value] [, USE_TEXT_ALIGNMENTS=value]
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 135
Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

X

A vector or two-dimensional array specifying the x-coordinates for the contour
surface. If X is a vector, each element of X specifies the x-coordinate for a column of
Z (e.g., X[0] specifies the x-coordinate for Z[0, *]). If X is a two-dimensional array,
each element of X specifies the x-coordinate of the corresponding point in Z (i.e., Xij
specifies the x-coordinate for Zij).

Y

A vector or two-dimensional array specifying the y-coordinates for the contour
surface. If Y is a vector, each element of Y specifies the y-coordinate for a row of Z
(e.g., Y[0] specifies the y-coordinate for Z[*,0]). If Y is a two-dimensional array, each
element of Y specifies the y-coordinate of the corresponding point in Z (Yij specifies
the y-coordinate for Zij).

Z

A vector or two-dimensional array containing the values to be contoured. If the X and
Y arguments are provided, the contour is plotted as a function of the (x, y) locations
specified by their contents. Otherwise, the contour is generated as a function of the
two-dimensional array index of each element of Z.
What’s New in IDL 6.0 ICONTOUR

136 Chapter 3: New IDL Routines
Keywords

Note
Because keywords to the ICONTOUR routine correspond to the names of
registered properties of the iContour tool, the keyword names must be specified in
full, without abbreviation.

AM_PM

Set this keyword to a vector of 2 strings indicating the names of the AM and PM
strings when processing explicitly formatted dates (CAPA, CApA, and CapA format
codes) with the LABEL_FORMAT keyword. See “Format Codes” in Chapter 10 of
the Building IDL Applications manual for more information on format codes.

ANISOTROPY

Set this keyword equal to a three-element vector [x, y, z] that represents the
multipliers to be applied to the internally computed correction factors along each axis
that account for anisotropic geometry. Correcting for anisotropy is particularly
important for the appropriate representations of downhill tickmarks.

By default, IDL will automatically compute correction factors for anisotropy based
on the [XYZ] range of the contour geometry. If the geometry (as provided via the
GEOMX, GEOMY, and GEOMZ keywords) falls within the range [xmin, ymin, zmin]
to [xmax, ymax, zmax], then the default correction factors are computed as follows:

dx = xmax - xmin
dy = ymax - ymin
dz = zmax - zmin
; Get the maximum of the ranges:
maxRange = (dx > dy) > dz
IF (dx EQ 0) THEN xcorrection = 1.0 ELSE $

xcorrection = maxRange / dx
IF (dy EQ 0) THEN ycorrection = 1.0 ELSE $

ycorrection = maxRange / dy
IF (dz EQ 0) THEN zcorrection = 1.0 ELSE $

zcorrection = maxRange / dz

This internally computed correction is then multiplied by the corresponding [x, y, z]
values of the ANISOTROPY keyword. The default value for this keyword is [1,1,1].
IDL converts, maintains, and returns this data as double-precision floating-point.
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 137
C_COLOR

Set this keyword to a 3 by N array of RGB colors representing the colors to be
applied at each contour level. If there are more contour levels than elements in this
vector, the colors will be cyclically repeated. If C_COLOR is set to 0, all contour
levels will be drawn in the color specified by the COLOR keyword (this is the
default).

However, the C_COLOR keyword does not activate the palette color mode, which is
recommended when working with contour levels and color. This mode can be
activated with the RGB_INDICES and RGB_TABLE keywords. See “Using
Palettes” on page 133 for more details.

C_FILL_PATTERN

Set this keyword to an array of IDLgrPattern objects representing the patterns to be
applied at each contour level if the FILL keyword is non-zero. If there are more
contour levels than fill patterns, the patterns will be cyclically repeated. If this
keyword is set to 0, all contour levels are filled with a solid color (this is the default).

C_LABEL_INTERVAL

Set this keyword to a vector of values indicating the distance (measured
parametrically relative to the length of each contour path) between labels for each
contour level. If the number of contour levels exceeds the number of provided
intervals, the C_LABEL_INTERVAL values will be repeated cyclically. The default
is 0.4.

C_LABEL_NOGAPS

Set this keyword to a vector of values indicating whether gaps should be computed
for the labels at the corresponding contour value. A zero value indicates that gaps will
be computed for labels at that contour value; a non-zero value indicates that no gaps
will be computed for labels at that contour value. If the number of contour levels
exceeds the number of elements in this vector, the C_LABEL_NOGAPS values will
be repeated cyclically. By default, gaps for the labels are computed for all levels (so
that a contour line does not pass through the label).
What’s New in IDL 6.0 ICONTOUR

138 Chapter 3: New IDL Routines
C_LABEL_OBJECTS

Set this keyword to an array of object references to provide examples of labels to be
drawn for each contour level. The objects specified via this keyword must inherit
from one of the following classes:

• IDLgrSymbol

• IDLgrText

If a single object is provided, and it is an IDLgrText object, each of its strings will
correspond to a contour level. If a vector of objects is used, any IDLgrText objects
should have only a single string; each object will correspond to a contour level.

By default, with C_LABEL_OBJECTS set equal to a null object, IDL computes text
labels that are the string representations of the corresponding contour level values.

Note
The objects specified via this keyword are used as descriptors only. The actual
objects drawn as labels are generated by IDL.

The contour labels will have the same color as their contour level (see C_COLOR)
unless the C_USE_LABEL_COLOR keyword is specified. The orientation of the
label will be automatically computed unless the C_USE_LABEL_ORIENTATION
keyword is specified. The horizontal and vertical alignment of any text labels will
default to 0.5 (i.e., centered) unless the USE_TEXT_ALIGNMENTS keyword is
specified.

Note
The object(s) set via this keyword will not be destroyed automatically when the
contour is destroyed.

C_LABEL_SHOW

Set this keyword to a vector of integers. For each contour value, if the corresponding
value in the C_LABEL_SHOW vector is non-zero, the contour line for that contour
value will be labeled. If the number of contour levels exceeds the number of elements
in this vector, the C_LABEL_SHOW values will be repeated cyclically. The default
is 0 indicating that no contour levels will be labeled.
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 139
C_LINESTYLE

Set this keyword to an array of linestyles representing the linestyles to be applied at
each contour level. The array may be either a vector of integers representing pre-
defined linestyles, or an array of 2-element vectors representing a stippling pattern
specification. If there are more contour levels than linestyles, the linestyles will be
cyclically repeated. If this keyword is set to 0, all levels are drawn as solid lines (this
is the default).

To use a pre-defined line style, set the C_LINESTYLE property equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

C_THICK

Set this keyword to an array of line thicknesses representing the thickness to be
applied at each contour level, where each element is a value between 1.0 and 10.0
points. If there are more contour levels than line thicknesses, the thicknesses will be
cyclically repeated. If this keyword is set to 0, all contour levels are drawn with a line
thickness of 1.0 points (this is the default).
What’s New in IDL 6.0 ICONTOUR

140 Chapter 3: New IDL Routines
C_USE_LABEL_COLOR

Set this keyword to a vector of values (0 or 1) to indicate whether the COLOR
property value for each of the label objects (for the corresponding contour level) is to
be used to draw that label. If the number of contour levels exceeds the number of
elements in this vector, the C_USE_LABEL_COLOR values will be repeated
cyclically. By default, this value is zero, indicating that the COLOR properties of the
label objects will be ignored, and the C_COLOR property for the contour object will
be used instead.

C_USE_LABEL_ORIENTATION

Set this keyword to a vector of values (0 or 1) to indicate whether the orientation for
each of the label objects (for the corresponding contour level) is to be used when
drawing the label. For text, the orientation of the object corresponds to the
BASELINE and UPDIR property values; for a symbol, this refers to the default (un-
rotated) orientation of the symbol. If the number of contour levels exceeds the
number of elements in this vector, the C_USE_LABEL_ORIENTATION values will
be repeated cyclically. By default, this value is zero, indicating that orientation of the
label object(s) will be set to automatically computed values (to correspond to the
direction of the contour paths).

C_VALUE

Set this keyword to a scalar value or a vector of values for which contour values are to
be drawn. If this keyword is set to 0, contour levels will be evenly sampled across the
range of the Z argument, using the value of the N_LEVELS keyword to determine the
number of samples. IDL converts, maintains, and returns this data as double-
precision floating-point.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 141
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to the color to be used to draw the contours. This color is specified
as an RGB vector. The default is [0, 0, 0]. This value will be ignored if the
C_COLOR keyword is set to a vector.

DAYS_OF_WEEK

Set this keyword to a vector of 7 strings to indicate the names to be used for the days
of the week when processing explicitly formatted dates (CDWA, CDwA, and CdwA
format codes) with the LABEL_FORMAT keyword. See “Format Codes” in Chapter
10 of the Building IDL Applications manual for more information on format codes.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in units specified by the UNITS
keyword. If no value is provided, a default value of one half the screen size is used.
The minimum width of the window correlates to the width of the menubar. The
minimum window height is 100 pixels.

DOWNHILL

Set this keyword to indicate that downhill tick marks should be rendered as part of
each contour level to indicate the downhill direction relative to the contour line.

FILL

Set this keyword to indicate that the contours should be filled. The default is to draw
the contour levels as lines without filling. Filling contours may produce less than
satisfactory results if your data contains NaNs, or if the contours are not closed.

HIDE

Set this keyword to a boolean value to indicate whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic
What’s New in IDL 6.0 ICONTOUR

142 Chapter 3: New IDL Routines
IDENTIFIER

Set this keyword to a named variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

LABEL_FONT

Set this keyword to an instance of an IDLgrFont object to describe the default font to
be used for contour labels. This font will be used for all text labels automatically
generated by IDL (i.e., if C_LABEL_SHOW is set but the corresponding
C_LABEL_OBJECTS text object is not provided), or for any text label objects
provided via C_LABEL_OBJECTS that do not already have the font property set.
The default value for this keyword is a NULL object reference, indicating that 12 pt.
Helvetica will be used.

LABEL_FORMAT

Set this keyword to a string that represents a format string or the name of a function
to be used to format the contour labels. If the string begins with an open parenthesis,
it is treated as a standard format string. (Refer to the Format Codes in the IDL
Reference Guide.) If the string does not begin with an open parenthesis, it is
interpreted as the name of a callback function to be used to generate contour level
labels.

The callback function is called with three parameters: Axis, Index, and Value and an
optional DATA keyword, where:

• Axis is simply the value 2 to indicate that values along the Z axis are being
formatted, which allows a single callback routine to be used for both axis
labeling and contour labeling.

• Index is the contour level index (indices start at 0).

• Value is the data value of the current contour level.

• DATA is the optional keyword allowing any user-defined value specified
through the LABEL_FRMTDATA keyword to ICONTOUR.

LABEL_FRMTDATA

Set this keyword to a value of any type. It will be passed via the DATA keyword to
the user-supplied formatting function specified via the LABEL_FORMAT keyword,
if any. By default, this value is 0, indicating that the DATA keyword will not be set
(and furthermore, need not be supported by the user-supplied function).
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 143
LABEL_UNITS

Set this keyword to a string indicating the units to be used for default contour level
labeling.

Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the contour levels correspond to time
values; IDL will determine the appropriate label format based upon the range
of values covered by the contour Z data.

• "" - The empty string is equivalent to the "Numeric" unit. This is the default.

If any of the time units are utilized, then the contour values are interpreted as Julian
date/time values.

Note
The singular form of each of the time unit strings is also acceptable (for example,
LEVEL_UNITS='Day' is equivalent to LEVEL_UNITS='Days').

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in units specified
by the UNITS keyword.

MAX_VALUE

Set this keyword to the maximum value to be plotted. Data values greater than this
value are treated as missing data. The default is the maximum value of the input Z
data. IDL converts, maintains, and returns this data as double-precision floating-
point.
What’s New in IDL 6.0 ICONTOUR

144 Chapter 3: New IDL Routines
MONTHS

Set this keyword to a vector of 12 strings indicating the names to be used for the
months when processing explicitly formatted dates (CMOA, CMoA, and CmoA
format codes) with the C_LABEL_FORMAT keyword. See “Format Codes” in
Chapter 10 of the Building IDL Applications manual for more information on format
codes.

MIN_VALUE

Set this keyword to the minimum value to be plotted. Data values less than this value
are treated as missing data. The default is the minimum value of the input Z data. IDL
converts, maintains, and returns this data as double-precision floating-point.

NAME

Set this keyword to a string that specifies the name of this visualization.

N_LEVELS

Set this keyword to the number of contour levels to generate. This keyword is ignored
if the C_VALUE keyword is set to a vector, in which case, the number of levels is
derived from the number of elements in that vector. Set this keyword to zero to
indicate that IDL should compute a default number of levels based on the range of
data values. This is the default.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

PLANAR

Set this keyword to indicate that the contoured data is to be projected onto a plane.
Unlike the underlying IDLgrContour object, the default for ICONTOUR is planar
(PLANAR = 1), which displays the contoured data in a plane. See the ZVALUE
keyword to specify the Z value at which to display the planar Contour plot if it is
displayed in a three dimensional data space.
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 145
RGB_INDICES

Set this keyword to a vector of indices into the color table to select colors to use for
contour level colors. Setting the RGB_INDICES keyword activates the palette color
mode, which allows colors from a specified color table to be used for the contour
levels. The values set for RGB_INDICES are indices into the RGB_TABLE array of
colors. If the number of colors selected using RGB_INDICES is less than the number
of contour levels, the colors are repeated cyclically. If indices are not specified with
the RGB_INDICES keyword, a default vector is constructed based on the values of
the contour levels within the contour data range scaled to the byte range of
RGB_TABLE.

See “Using Palettes” on page 133 for more details on the palette color mode.

RGB_TABLE

Set this keyword to either a 3 by 256 or 256 by 3 array containing color values to use
for contour level colors. Setting the RGB_TABLE keyword activates the palette color
mode, which allows colors from a specified color table to be used for the contour
levels. The colors for each level are selected from RGB_TABLE using the
RGB_INDICES vector. If indices are not specified with the RGB_INDICES keyword
then a default vector is constructed based on the values of the contour levels within
the contour data range scaled to the byte range of RGB_TABLE.

If the visualization is in palette color mode, but colors have not been specified with
the RGB_TABLE keyword, the contour plot uses a default grayscale ramp.

See “Using Palettes” on page 133 for more details on the palette color mode.

SHADE_RANGE

Set this keyword to a two-element array that specifies the range of pixel values (color
indices) to use for shading. The first element is the color index for the darkest pixel.
The second element is the color index for the brightest pixel. This value is ignored
when the contour is drawn to a graphics destination that uses the RGB color model.

SHADING

Set this keyword to an integer representing the type of shading to use:

• 0 = Flat (default): The color has a constant intensity for each face of the
contour, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.
What’s New in IDL 6.0 ICONTOUR

146 Chapter 3: New IDL Routines
Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

TICKINTERVAL

Set this keyword equal to a number indicating the distance between downhill
tickmarks, in data units. If TICKINTERVAL is not set, or if you explicitly set it to
zero, IDL will compute the distance based on the geometry of the contour. IDL
converts, maintains, and returns this data as double-precision floating-point.

TICKLEN

Set this keyword equal to a number indicating the length of the downhill tickmarks,
in data units. If TICKLEN is not set, or if you explicitly set it to zero, IDL will
compute the length based on the geometry of the contour. IDL converts, maintains,
and returns this data as double-precision floating-point

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool and is used for tool-related display purposes only – as the root of
the hierarchy shown in the Tool Browser, for example.

USE_TEXT_ALIGNMENTS

Set this keyword to indicate that, for any IDLgrText labels (as specified via the
C_LABEL_OBJECTS keyword), the ALIGNMENT and
VERTICAL_ALIGNMENT property values for the given IDLgrText object(s) are to
be used to draw the corresponding labels. By default, this value is zero, indicating
that the ALIGNMENT and VERTICAL_ALIGNMENT properties of the label
IDLgrText object(s) will be set to default values (0.5 for each, indicating centered
labels).

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 147
VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely. ZMAJOR is ignored
unless PLANAR is set to 0.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely. ZMINOR is ignored
unless PLANAR is set to 0.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum. ZRANGE is ignored
unless PLANAR is set to 0.
What’s New in IDL 6.0 ICONTOUR

148 Chapter 3: New IDL Routines
[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark. ZSUBTICKLEN is
ignored unless PLANAR is set to 0.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black). ZTEXT_COLOR is ignored unless PLANAR is set to 0.

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

ZTICKFONT_INDEX is ignored unless PLANAR is set to 0.

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points. ZTICKFONT_SIZE is ignored unless PLANAR is set
to 0.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic

ZTICKFONT_STYLE is ignored unless PLANAR is set to 0.
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 149
[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

ZTICKFORMAT is ignored unless PLANAR is set to 0.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.
What’s New in IDL 6.0 ICONTOUR

150 Chapter 3: New IDL Routines
For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

ZTICKINTERVAL is ignored unless PLANAR is set to 0.

[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

ZTICKLAYOUT is ignored unless PLANAR is set to 0.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.
ZTICKLEN is ignored unless PLANAR is set to 0.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark. ZTICKNAME is ignored unless PLANAR is set to 0.
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 151
[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

ZTICKUNITS is ignored unless PLANAR is set to 0.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.
What’s New in IDL 6.0 ICONTOUR

152 Chapter 3: New IDL Routines
[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point. ZTICKVALUES
is ignored unless PLANAR is set to 0.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis. ZTITLE is
ignored unless PLANAR is set to 0.

ZVALUE

For a planar contour plot, the height of the Z plane onto which the contour plot is
projected.

Note
This keyword will not have any visual effect unless PLANAR is true and the plot is
in a 3D dataspace, for example by selecting the Surface operation to add a surface
plot to the dataspace along with the contour plot.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to bring contour data into
the iContour tool.

At the IDL Command Line, enter:

file = FILEPATH('convec.dat', SUBDIRECTORY = ['examples', 'data'])
data = READ_BINARY(file, DATA_DIMS = [248, 248])
ICONTOUR, data
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 153
Double-click on a contour to display the contour properties. Change the Number of
levels setting to 20, change Use palette color to True, and use the Levels Color
Table setting to load the EOS B predefined color table through the Load Predefined
button in the Palette Editor. Then, change the Fill contours setting to True.

The following figure displays the output of this example:

Example 2

This example shows how to use the iTool File → Open command to load DICOM
data into the iContour tool.

At the IDL Command Line, enter:

ICONTOUR

Select File → Open to display the Open dialog, then browse to find mr_brain.dcm
in the examples/data directory in the IDL distribution, and click Open.

Double-click on a contour to display the contour properties. Then, change Use
palette color to True and the Fill contours setting to True.

Smooth the data by selecting Operations → Filter → Smooth.

Figure 3-2: Earth Mantle Convection iContour Example
What’s New in IDL 6.0 ICONTOUR

154 Chapter 3: New IDL Routines
The following figure displays the output of this example:

Example 3

This example shows how to use the File → Import command to load binary data into
the iContour tool.

At the IDL Command Line, enter:

ICONTOUR

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find idemosurf.dat in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Contour and click Finish.

The Binary Template wizard is displayed. In the Binary Template, change File’s byte
ordering to Little Endian. Then, click New Field, and enter the following
information in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Float (32 bit)

• Number of Dimensions: 2

Figure 3-3: Smoothed Brain MRI iContour Example
ICONTOUR What’s New in IDL 6.0

Chapter 3: New IDL Routines 155
• 1st Dimension Size: 200

• 2nd Dimension Size: 200

Click OK to close the New Field dialog and the Binary Template dialog, and the
contours are displayed.

Double-click on a contour to display the contour properties. Change the Number of
levels setting to 10, change Use palette color to True, and use the Levels Color
Table setting to load the Rainbow18 predefined color table through the Load
Predefined button in the Palette Editor. Then, change the Fill contours setting to
True.

Change the Projection setting from Planar to Three-D.

The following figure displays the output of this example:

Version History

Introduced: 6.0

Figure 3-4: Filled Three-DImensional iContour Example
What’s New in IDL 6.0 ICONTOUR

156 Chapter 3: New IDL Routines
IDL_VALIDNAME

The IDL_VALIDNAME function determines whether a string may be used as a valid
IDL variable name or structure tag name. Optionally, the routine can convert non-
valid characters into underscores, returning a valid name string.

Syntax

Result = IDL_VALIDNAME(String [, /CONVERT_ALL] [, /CONVERT_SPACES])

Return Value

Returns the input string, optionally converting all spaces or non-alphanumeric
characters to underscores. If the input string cannot be used as a valid variable or
structure tag name, a null string is returned.

Arguments

String

A string representing the IDL variable or structure tag name to be checked.

Keywords

CONVERT_ALL

If this keyword is set, then String is converted into a valid IDL variable name using
the following rules:

• All non-alphanumeric characters (except ‘_’, ‘!’ and ‘$’) are converted to
underscores

• If the first character of String is a number or a ‘$’, then an underscore is
prepended to the string

• If the first character of String is not a valid character (‘_’, ‘!’, ‘A’…’Z’) then
that character is converted to an underscore

• If String is an empty string or a reserved word (such as “AND”) then an
underscore is prepended to the string
IDL_VALIDNAME What’s New in IDL 6.0

Chapter 3: New IDL Routines 157
Tip
The CONVERT_ALL keyword guarantees that a valid variable name is returned. It
is useful in converting user-supplied strings into valid IDL variable names.

CONVERT_SPACES

If this keyword is set, then all spaces within String are converted to underscores. If
String contains any other non-alphanumeric characters, then a null string is returned,
indicating that the string cannot be used as a valid variable name.

Note
CONVERT_SPACES behaves the same as CREATE_STRUCT when checking
structure tag names.

Examples

The following table provides IDL_VALIDNAME examples and their results.

Version History

Introduced: 6.0

See Also

CREATE_STRUCT

Example Result

result = IDL_VALIDNAME('abc') 'abc'

result = IDL_VALIDNAME(' a b c ') ''

result = IDL_VALIDNAME(' a b c ', /CONVERT_SPACES) '_a_b_c_'

result = IDL_VALIDNAME('$var') ''

result = IDL_VALIDNAME('$var', /CONVERT_ALL) '_$VAR'

result = IDL_VALIDNAME('and') ''

result = IDL_VALIDNAME('and', /CONVERT_ALL) '_AND'

Table 3-1: IDL_VALIDNAME Examples
What’s New in IDL 6.0 IDL_VALIDNAME

158 Chapter 3: New IDL Routines
IDLITSYS_CREATETOOL

The IDLITSYS_CREATETOOL function creates an instance of the specified tool
registered within the IDL Intelligent Tools system.

This routine is written in the IDL language. Its source code can be found in the file
idlitsys_createtool.pro in the lib/itools subdirectory of the IDL
distribution.

Syntax

Result = IDLITSYS_CREATETOOL(StrTool[, INITIAL_DATA=data]
[, OVERPLOT=iToolID] [, PANEL_LOCATION={0 | 1 | 2 | 3}]
[, VIEW_GRID=vector] [, /VIEW_NEXT] [, VIEW_NUMBER=number]
[, VISUALIZATION_TYPE=vistype])

Return Value

Returns an iToolID that can be used to reference the created tool at a later time.

Arguments

StrTool

The name of a tool that has been registered with the iTools system via the
ITREGISTER routine.

Keywords

Note
Additional keywords/properties associated with the target visualization at the
command line are passed to the underlying system to be applied to the created tool
and visualizations.

INITIAL_DATA

Set this keyword to the data objects that are used to create the initial visualizations in
the created tool.
IDLITSYS_CREATETOOL What’s New in IDL 6.0

Chapter 3: New IDL Routines 159
OVERPLOT

Set this keyword to the iToolID of the tool in which the visualization is to be created.
This iToolID can be obtained during the creation of a previous tool or from the
ITGETCURRENT routine.

PANEL_LOCATION

Set this keyword to an integer value to control where a user interface panel should be
displayed. Possible values are:

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created; it is ignored if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified.

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

0 position the panel above the iTool window

1 position the panel below the iTool window

2 position the panel to the left of the iTool window.

3 position the panel to the right of the iTool window (this is the default).
What’s New in IDL 6.0 IDLITSYS_CREATETOOL

160 Chapter 3: New IDL Routines
VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VISUALIZATION_TYPE

Set this keyword to a string containing the name of a registered visualization type that
should be used to visualize any data specified by the INITIAL_DATA keyword. If
this keyword is not specified, the iTool will select a visualization type based on the
data type of the input data.

Examples

See Chapter 5, “Example: Simple iTool” in the iTool Developer’s Guide manual.

Version History

Introduced: 6.0

See Also

ITREGISTER, Chapter 5, “Creating an iTool Launch Routine” in the iTool
Developer’s Guide manual.
IDLITSYS_CREATETOOL What’s New in IDL 6.0

Chapter 3: New IDL Routines 161
IIMAGE

The IIMAGE procedure creates an iTool and associated user interface (UI)
configured to display and manipulate image data.

Note
If no arguments are specified, the IIMAGE procedure creates an empty Image tool.

This routine is written in the IDL language. Its source code can be found in the file
iimage.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

IIMAGE[, Image[, X, Y]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y}RANGE=[min, max]]

iTool Image Keywords: [, ALPHA_CHANNEL=2-D array]
[, BLUE_CHANNEL=2-D array] [, GREEN_CHANNEL=2-D array]
[, IMAGE_DIMENSIONS=[width, height]] [, IMAGE_LOCATION=[x, y]]
[, RED_CHANNEL=2-D array] [, RGB_TABLE=array of 256 by 3 or 3 by 256
elements]

Image Object Keywords: [, CHANNEL=hexadecimal bitmask]
[, CLIP_PLANES=array] [, /HIDE] [, /INTERPOLATE] [, /ORDER]

Axis Object Keywords: [, {X | Y}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y}MAJOR=integer] [, {X | Y}MINOR=integer]
[, {X | Y}SUBTICKLEN=ratio] [, {X | Y}TEXT_COLOR=RGB vector]
[, {X | Y}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y}TICKFONT_SIZE=integer] [, {X | Y}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y}TICKFORMAT=string or string array] [, {X | Y}TICKINTERVAL=value]
[, {X | Y}TICKLAYOUT={0 | 1 | 2}] [, {X | Y}TICKLEN=value]
[, {X | Y}TICKNAME=string array] [, {X | Y}TICKUNITS=string]
[, {X | Y}TICKVALUES=vector] [, {X | Y}TITLE=string]
What’s New in IDL 6.0 IIMAGE

162 Chapter 3: New IDL Routines
Arguments

Image

Either a vector, a two-dimensional, or a three-dimensional array representing the
sample values to be displayed as an image.

If Image is a vector:

• The X and Y arguments must also be present and contain the same number of
elements. In this case, a dialog will be presented that offers the option of
gridding the data to a regular grid (the results of which will be displayed as a
color-indexed image).

If Image is a two-dimensional array:

• If either dimension is 3:

Image represents an array of x, y, and z values (either [[x0, y0, z0], [x1, y1, z1],
..., [xn, yn, zn]] or [[x0, x1, ..., xn], [y0, y1, ..., yn], [z0, z1, ..., zn]] where n is the
length of the other dimension). In this case, the X and Y arguments, if present,
will be ignored. A dialog will be presented that allows the option of gridding
the data to a regular grid (the results of which will be displayed as a color-
indexed image, using the z values as the image data values).

• If neither dimension is 3:

Image represents an array of sample values to be displayed as a color-indexed
image. If X and Y are provided, the sample values are defined as a function of
the corresponding (x, y) locations; otherwise, the sample values are implicitly
treated as a function of the array indices of each element of Image.

If Image is a three-dimensional array:

• If one of the dimensions is 3:

Image is a 3 x n x m, n x 3 x m, or n x m x 3 array representing the red, green,
and blue channels of the image to be displayed.

• If one of the dimensions is 4:

Image is a 4 x n x m, n x 4 x m, or n x m x 4 array representing the red, green,
blue, and alpha channels of the image to be displayed.
IIMAGE What’s New in IDL 6.0

Chapter 3: New IDL Routines 163
X

Either a vector or a two-dimensional array representing the x-coordinates of the
image grid.

If the Image argument is a vector:

• X must be a vector with the same number of elements as Image.

If the Image argument is a two-dimensional array (for which neither dimension is 3):

• If X is a vector:

Each element of X specifies the x-coordinates for a column of Image (e.g., X[0]
specifies the x-coordinate for Image[0, *]).

• If X is a two-dimensional array:

Each element of X specifies the x-coordinate of the corresponding point in
Image (Xij specifies the x-coordinate of Imageij).

Y

Either a vector or a two-dimensional array representing the y-coordinates of the
image grid.

If the Image argument is a vector:

• Y must be a vector with the same number of elements.

If the Image argument is a two-dimensional array:

• If Y is a vector:

Each element of Y specifies the y-coordinates for a column of Image (e.g., Y[0]
specifies the y-coordinate for Image[*, 0]).

• If Y is a two-dimensional array:

Each element of Y specifies the y-coordinate of the corresponding point in
Image (Yij specifies the y-coordinate of Imageij).
What’s New in IDL 6.0 IIMAGE

164 Chapter 3: New IDL Routines
Keywords

Note
Because keywords to the IIMAGE routine correspond to the names of registered
properties of the iImage tool, the keyword names must be specified in full, without
abbreviation.

ALPHA_CHANNEL

Set this keyword to a two-dimensional array representing the alpha channel pixel
values for the image to be displayed. This keyword is ignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, GREEN_CHANNEL, and BLUE_CHANNEL keywords.

BLUE_CHANNEL

Set this keyword to a two-dimensional array representing the blue channel pixel
values for the image to be displayed. This keyword is ignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, GREEN_CHANNEL, and ALPHA_CHANNEL keywords.

CHANNEL

Set this keyword to a hexadecimal bitmask that defines which color channel(s) to
draw. Each bit that is a 1 is drawn; each bit that is a 0 is not drawn. For example,
'ff0000'X represents a Blue channel write. The default is to draw all channels, and is
represented by the hexadecimal value 'ffffff'X.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.
IIMAGE What’s New in IDL 6.0

Chapter 3: New IDL Routines 165
DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

GREEN_CHANNEL

Set this keyword to a two-dimensional array representing the green channel pixel
values for the image to be displayed. This keyword is ignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, BLUE_CHANNEL, and ALPHA_CHANNEL keywords.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

IMAGE_DIMENSIONS

Set this keyword to a 2-element vector, [width, height], to specify the image
dimensions (in data units). By default, the dimensions match the pixel width of the
image.

IMAGE_LOCATION

Set this keyword to a 2-element vector, [x, y], to specify the image location (in data
units). By default, the location is [0, 0].

INTERPOLATE

Set this keyword to one (1) to display the iImage tool using bilinear interpolation.
The default is to use nearest neighbor interpolation.
What’s New in IDL 6.0 IIMAGE

166 Chapter 3: New IDL Routines
LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The name is
used for tool-related display purposes only–as the root of the hierarchy shown in the
Tool Browser, for example.

ORDER

Set this keyword to force the rows of the image data to be drawn from top to bottom.
By default, image data is drawn from the bottom row up to the top row.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

RED_CHANNEL

Set this keyword to a two-dimensional array representing the red channel pixel values
for the image to be displayed. This keyword is ignored if the Image argument is
present, and is intended to be used in conjunction with some combination of the
GREEN_CHANNEL, BLUE_CHANNEL, and ALPHA_CHANNEL keywords.

RGB_TABLE

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values. If no color
tables are supplied, the tool will provide a default 256-entry linear grayscale ramp.

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool.
IIMAGE What’s New in IDL 6.0

Chapter 3: New IDL Routines 167
VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

[XY]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XY]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.
What’s New in IDL 6.0 IIMAGE

168 Chapter 3: New IDL Routines
[XY]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.

[XY]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark.

[XY]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black).

[XY]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

[XY]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points.

[XY]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic
IIMAGE What’s New in IDL 6.0

Chapter 3: New IDL Routines 169
[XY]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

[XY]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.
What’s New in IDL 6.0 IIMAGE

170 Chapter 3: New IDL Routines
[XY]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XY]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XY]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XY]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
IIMAGE What’s New in IDL 6.0

Chapter 3: New IDL Routines 171
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XY]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XY]TITLE

Set this keyword to a string representing the title of the specified axis.
What’s New in IDL 6.0 IIMAGE

172 Chapter 3: New IDL Routines
Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how use the IDL Command Line to load data into the iImage
tool.

At the IDL Command Line, enter:

file = FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_PNG(file)
IIMAGE, data, TITLE = 'Electron Image of Mineral Deposits'

Double-click the image to display image properties, and use the Image Palette
setting to load the Stern Special predefined color table through the Load
Predefined button in the Palette Editor.

Use the Text Annotation tool to insert a title at the top of the image. Select Insert →
Colorbars to insert a color bar at the bottom of the image. Double-click on the
colorbar to display its properties, and change the Title setting to Stern Special.

The following figure displays the output of this example:

Figure 3-5: Mineral iImage Example with Sterns Color Table
IIMAGE What’s New in IDL 6.0

Chapter 3: New IDL Routines 173
Example 2

This example shows how to use the iTool File → Open command to load binary data
into the iImage tool.

At the IDL Command Line, enter:

IIMAGE

Select File → Open to display the Open dialog, then browse to find worldelv.dat
in the examples/data directory in the IDL distribution, and click Open.

In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 2

• 1st Dimension Size: 360

• 2nd Dimension Size: 360

Click OK to close the New Field dialog and the Binary Template dialog, and the
image is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Double-click the image to display image properties, and use the Image Palette
setting to load the STD GAMMA-II predefined color table through the Load
Predefined button in the Palette Editor.
What’s New in IDL 6.0 IIMAGE

174 Chapter 3: New IDL Routines
The following figure displays the output of this example:

Example 3

This example shows how to use the IDL Import Data Wizard to load image data into
the iImage tool.

At the IDL Command Line, enter:

IIMAGE

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find n_vasinfecta.jpg in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Image and click Finish.

Define the edges within the image by selecting Operations → Filter → Sobel Filter.

Figure 3-6: World Elevation iImage Example
IIMAGE What’s New in IDL 6.0

Chapter 3: New IDL Routines 175
The following figure displays the output of this example:

Version History

Introduced: 6.0

Figure 3-7: Sobel FIltered Neocosmospora Vasinfecta iImage Example
What’s New in IDL 6.0 IIMAGE

176 Chapter 3: New IDL Routines
IPLOT

The IPLOT procedure creates an iTool and the associated user interface (UI)
configured to display and manipulate plot data.

Note
If no arguments are specified, the IPLOT procedure creates an empty Plot tool.

This routine is written in the IDL language. Its source code can be found in the file
iplot.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

Cartesian

IPLOT, [X,] Y

or

IPLOT, X, Y, Z

Polar

IPLOT[, R], Theta, /POLAR

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Plot Keywords: [, ERRORBAR_COLOR=RGB vector]
[, ERROR_CAPSIZE=points{0.0 to 1.0}] [, /FILL_BACKGROUND]
[, FILL_COLOR=RGB vector] [, FILL_LEVEL=value] [, RGB_TABLE=byte array
of 256 by 3 or 3 by 256 elements] [, /SCATTER] [, SYM_COLOR=RGB vector]
[, SYM_INCREMENT=integer] [, SYM_INDEX=integer]
[, SYM_SIZE=points{0.0 to 1.0}] [, SYM_THICK=points{1.0 to 10.0}]
[, TRANSPARENCY=percent{0.0 to 100.0}] [, /USE_DEFAULT_COLOR]
[, /XY_SHADOW] [, /{X | Y | Z}_ERRORBARS] [, /{X | Y | Z}_LOG]
[, {X | Y | Z}ERROR=vector or array] [, /XZ_SHADOW] [, /YZ_SHADOW]

Plot Object Keywords: [, CLIP_PLANES=array] [, COLOR = RGB vector]
[, /HIDE] [, /HISTOGRAM] [, LINESTYLE=integer] [, MAX_VALUE=value]
[, MIN_VALUE=value] [, NSUM=value] [, /POLAR] [, THICK=points{1.0 to
10.0}] [, VERT_COLORS=byte vector]
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 177
Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

R

If the POLAR keyword is set, R is a vector representing the radius of the polar plot. If
R is specified, Theta is plotted as a function of R. If R is not specified, Theta is plotted
as a function of the vector index of Theta.

Theta

If the POLAR keyword is set, Theta is a vector representing the angle (in radians) of
the polar plot.

X

A vector representing the x-coordinates of the plot.

Y

A vector or a two-dimensional array. If Y is:

• a vector, it represents the y-coordinates of the plot. If X is not specified, Y is
plotted as a function of the vector index of Y. If X is specified, Y is plotted as a
function of X.

• a 2-by-n array, Y[0, *] represents the x-coordinates and Y[1, *] represents the y-
coordinates of the plot.

• a 3-by-n array, Y[0, *] represents the x-coordinates, Y[1, *] represents the y-
coordinates, and Y[2, *] represents the z-coordinates of the plot.
What’s New in IDL 6.0 IPLOT

178 Chapter 3: New IDL Routines
Z

A vector representing the z-coordinates of the plot.

Keywords

Note
Because keywords to the IPLOT routine correspond to the names of registered
properties of the iPlot tool, the keyword names must be specified in full, without
abbreviation.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to an RGB value specifying the color to be used as the foreground
color for this plot. The default is [0, 0, 0] (black).

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

ERRORBAR_COLOR

Set this keyword to an RGB value specifying the color for the error bar. The default
value is [0, 0, 0] (black).
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 179
ERRORBAR_CAPSIZE

Set this keyword to a floating-point value specifying the size of the error bar endcaps.
This value ranges from 0 to 1.0, where a value of 1.0 results in an endcap that is 10%
of the data range.

FILL_BACKGROUND (for 2D plots only)

Set this keyword to fill the area under the plot. This keyword is only available for
two-dimensional plots. This keyword is ignored for three-dimensional plots.

FILL_COLOR (for 2D plots only)

Set this keyword to an RGB value specifying the color for the filled area. The default
value is [255, 255, 255] (white). This keyword is only available for two-dimensional
plots. This keyword is ignored for three-dimensional plots.

FILL_LEVEL (for 2D plots only)

Set this keyword to a floating-point value specifying the y-value for the lower
boundary of the fill region. This keyword is only available for two-dimensional plots.
This keyword is ignored for three-dimensional plots.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HISTOGRAM (for 2D plots only)

Set this keyword to force only horizontal and vertical lines to be used to connect the
plotted points. By default, the points are connected using a single straight line. This
keyword is only available for two-dimensional plots. This keyword is ignored for
three-dimensional plots.

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.
What’s New in IDL 6.0 IPLOT

180 Chapter 3: New IDL Routines
LINESTYLE

Set this keyword to indicate the line style that should be used to draw the plot lines.
The value can be either an integer value specifying a pre-defined line style, or a two-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE keyword equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot

• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing data and are not plotted.

Note
The IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 181
MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing data and are not plotted.

Note
The IEEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.

NAME

Set this keyword to a string to specify the name for this visualization.

NSUM

Set this keyword to the number of data points to average when plotting. If NSUM is
larger than 1, every group of NSUM points is averaged to produce one plotted point.
If there are M data points, then M/NSUM points are plotted.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

POLAR

Set this keyword to display the plot as a polar plot. If this keyword is set, the
arguments will be interpreted as R and Theta or simply Theta for a single argument. If
R is not supplied the plot will use a vector of indices for the R argument.

RGB_TABLE

Set this keyword to either a 3 by 256 or 256 by 3 byte array containing color values to
use for vertex colors. If the values supplied are not of type byte, they are scaled to the
byte range using BYTSCL. Use the VERT_COLORS keyword to specify indices that
select colors from the values specified with RGB_TABLE.

SCATTER

Set this keyword to generate a scatter plot. This action is equivalent to setting
LINESTYLE = 6 (no line) and SYM_INDEX = 3 (Period symbol).
What’s New in IDL 6.0 IPLOT

182 Chapter 3: New IDL Routines
SYM_COLOR

Set this keyword to an RGB value specifying the color for the plot symbol.

Note
This color is applied to the symbol only if the USE_DEFAULT_COLOR property is
set.

SYM_INCREMENT

Set this keyword to an integer value specifying the number of vertices to increment
between symbol instances. The default value is 1, which places a symbol on every
vertex.

SYM_INDEX

Set this keyword to one of the following scalar-represented internal default symbols:

• 0 = No symbol

• 1 = Plus sign, ‘+’ (default)

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X

• 8 = Arrow Head

SYM_SIZE

Set this keyword to a floating-point value from 0.0 to 1.0 specifying the size of the
plot symbol. A value of 1.0 results in an symbol that is 10% of the width/height of the
plot.

SYM_THICK

Set this keyword to floating-point value from 1 to 10 points specifying the thickness
of the plot symbol.
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 183
THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to be
used to draw the plotted lines, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool and is used for tool-related display purposes only–as the root of
the hierarchy shown in the Tool Browser, for example.

TRANSPARENCY

Set this keyword to floating-point value specifying the transparency of the filled area.
Valid values range from 0.0 to 100.0. The default value is 0.0 (opaque).

USE_DEFAULT_COLOR

Set this keyword to have the color of the symbols match the plot color. If this
keyword is set to 0 (USE_DEFAULT_COLOR = 0), the color specified by the
SYM_COLOR keyword is used for symbols instead of matching the color of the plot.

VERT_COLORS

Set this keyword to a vector of indices into the color table to select colors to use for
each vertex (plot data point). Alternately, set this keyword to a 3 by N byte array
containing color values to use for each vertex. If the values supplied are not of type
byte, they are scaled to the byte range using BYTSCL. If indices are supplied but no
colors are provided with the RGB_TABLE keyword, then a default grayscale ramp is
used. If a 3 by N array of colors is provided, the colors are used directly and the color
values provided with RGB_TABLE are ignored. If the number of indices or colors
specified is less than the number of vertices, the colors are repeated cyclically.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).
What’s New in IDL 6.0 IPLOT

184 Chapter 3: New IDL Routines
VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

XY_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in a three-dimensional plot. The
shadow lies in the XY plane at the minimum value of the data space range of the z-
axis. This keyword has no effect for two-dimensional plots.

[XYZ]_ERRORBARS

Set this keyword to show error bars. The Z_ERRORBARS keyword is for three-
dimensional plots only.

[XYZ]_LOG

Set this keyword to specify a logarithmic axis. The minimum value of the axis range
must be greater than zero. The Z_LOG keyword is for three-dimensional plots only.
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 185
[XYZ]ERROR

Set this keyword to either a vector or a 2 by N array of error values to be displayed as
error bars for the [XYZ] dimension of the plot. The length of this array must be equal
in length to the number of vertices of the plot or it will be ignored. If this keyword is
set to a vector, the value will be applied as both a negative and positive error and the
error bar will be symmetric about the plot vertex. If this keyword is set to a 2 by N
array the [0, *] values define the negative error and the [1, *] values define the
positive error, allowing asymmetric error bars. The ZERROR keyword is for three-
dimensional plots only.

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely. ZMAJOR is for three-
dimensional plots only.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely. ZMINOR is for three-
dimensional plots only.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum. ZRANGE is for three-
dimensional plots only.

[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark. ZSUBTICKLEN is for
three-dimensional plots only.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black). ZTEXT_COLOR is for three-dimensional plots only.
What’s New in IDL 6.0 IPLOT

186 Chapter 3: New IDL Routines
[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

ZTICKFONT_INDEX is for three-dimensional plots only.

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points. ZTICKFONT_SIZE is for three-dimensional plots
only.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic

ZTICKFONT_STYLE is for three-dimensional plots only.

[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 187
If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

ZTICKFORMAT is for three-dimensional plots only.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

ZTICKINTERVAL is for three-dimensional plots only.
What’s New in IDL 6.0 IPLOT

188 Chapter 3: New IDL Routines
[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

ZTICKLAYOUT is for three-dimensional plots only.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.
ZTICKLEN is for three-dimensional plots only.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark. ZTICKNAME is for three-dimensional plots only.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 189
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

ZTICKUNITS is for three-dimensional plots only.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point. ZTICKVALUES
is for three-dimensional plots only.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis. ZTITLE is for
three-dimensional plots only.
What’s New in IDL 6.0 IPLOT

190 Chapter 3: New IDL Routines
XZ_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in a three-dimensional plot. The
shadow lies in the XZ plane at the minimum value of the data space range of the y-
axis. This keyword has no effect for two-dimensional plots.

YZ_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in a three-dimensional plot. The
shadow lies in the YZ plane at the minimum value of the data space range of the x-
axis. This keyword has no effect for two-dimensional plots.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to load data and variables
into the iPlot tool.

At the IDL Command Line, enter:

file = FILEPATH('elnino.dat', SUBDIRECTORY = ['examples','data'])
data = READ_BINARY(file, DATA_TYPE = 4, DATA_DIMS = [500, 1], $

ENDIAN = 'little')
time = DINDGEN(500)*0.25d + 1871
IPLOT, time, data, TITLE = 'El Nino', COLOR = [255, 128, 0]

Place a title on the time axis of your plot by selecting the axis, right-clicking to
display the context menu, selecting Properties to display the property sheet, and
typing Year in the Title field.

Place a title on the temperature axis of your plot by selecting the axis, displaying the
property sheet, and entering the following in the Title field:

Temperature Anomaly (!Uo!NC)

Annotate your plot by selecting the Text Annotation tool, clicking near the top of the
plot, and typing El Nino.
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 191
Add the special character to the annotation by selecting the annotation text,
displaying the property sheet, selecting the lower-case n in Nino in the Title field,
and replacing it with the following:

!Z(U+0F1)

Note
U+0F1 is unicode for the ñ character.

The following figure displays the output of this example:

Example 2

This example shows how to use the File → Open command to load binary data into
the iPlot tool.

At the IDL Command Line, enter:

IPLOT

Select File → Open command to display the Open dialog, then browse to find
dirty_sine.dat in the examples/data directory in the IDL distribution, and
click Open.

Figure 3-8: El Niño iPlot Example
What’s New in IDL 6.0 IPLOT

192 Chapter 3: New IDL Routines
In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 1

• 1st Dimension Size: 256

Click OK to close the New Field dialog and the Binary Template dialog, and the
surface is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Annotate your plot by selecting the Text Annotation tool, clicking near the curve, and
typing Noisy Sine Wave.

The following figure displays the output of this example:

Example 3

This example shows how to use the File → Import command to load ASCII data into
the iPlot tool.

At the IDL Command Line, enter:

IPLOT

Figure 3-9: Noisy Sine Data iPlot Example
IPLOT What’s New in IDL 6.0

Chapter 3: New IDL Routines 193
Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find sine_waves.txt in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Plot and click Finish.

Then, the ASCII Template wizard is displayed.

1. At Step 1, click Next>> to accept the displayed data type/range definition.

2. At Step 2, click Next>> to accept the displayed delimiter/fields definition.

3. At Step 3, click Finish to accept the displayed field specification. The
sine_waves.txt plot is displayed in the iPlot window.

The plot consists of two overlapping sine waves. To make it easier to distinguish
between the two, change the appearance of the noisy sine wave to a dotted line
pattern by selecting the noisy sine wave, right-clicking to display the context menu,
selecting Properties, and changing the Linestyle property to a dotted line.

The following figure displays the output of this example:

Version History

Introduced: 6.0

Figure 3-10: Overlapping Sine Waves iPlot Example
What’s New in IDL 6.0 IPLOT

194 Chapter 3: New IDL Routines
ISURFACE

The ISURFACE procedure creates an iTool and the associated user interface (UI)
configured to display and manipulate surface data.

Note
If no arguments are specified, the ISURFACE procedure creates an empty Surface
tool.

This routine is written in the IDL language. Its source code can be found in the file
isurface.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ISURFACE[, Z [, X, Y]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Surface Keywords: [, RGB_TABLE=array of 256 by 3 or 3 by 256 elements]
[, TEXTURE_ALPHA=2-D array] [, TEXTURE_BLUE=2-D array]
[, TEXTURE_GREEN=2-D array] [, TEXTURE_IMAGE=array]
[, TEXTURE_RED=2-D array]

Surface Object Keywords: [, BOTTOM=index or RGB vector]
[, CLIP_PLANES=array] [, COLOR=RGB vector] [, DEPTH_OFFSET=value]
[, /EXTENDED_LEGO] [, /HIDDEN_LINES] [, /HIDE] [, LINESTYLE=value]
[, SHADING={0 | 1}] [, /SHOW_SKIRT] [, SKIRT=Z value]
[, STYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}] [, /TEXTURE_HIGHRES]
[, /TEXTURE_INTERP] [, THICK=points{1.0 to 10.0}] [, /USE_TRIANGLES]
[, VERT_COLORS=vector or 2-D array] [, ZERO_OPACITY_SKIP={0 | 1}]

Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 195
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

X

A vector or two-dimensional array specifying the x-coordinates of the grid.

If X is a vector:

• If Y and Z are vectors and have the same length as X:

Each element of X specifies the x-coordinates of a point in space (e.g., X[0]
specifies the x-coordinate for Y[0] and Z[0]). The gridding wizard will
automatically launch in this case.

• If Z is a two-dimensional array:

Each element of X specifies the x-coordinates for a column of Z (e.g., X[0]
specifies the x-coordinate for Z[0, *]).

If X is a two-dimensional array, each element of X specifies the x-coordinate of the
corresponding point in Z (Xij specifies the x-coordinate of Zij).

Y

A vector or two-dimensional array specifying the y-coordinates of the grid.

If Y is a vector:

• If X and Z are vectors and have the same length as Y:

Each element of Y specifies the y-coordinates of a point in space (e.g., Y[0]
specifies the y-coordinate for X[0] and Z[0]). The gridding wizard will
automatically launch in this case.

• If Z is a two-dimensional array:

Each element of Y specifies the y-coordinates for a column of Z (e.g., Y[0]
specifies the y-coordinate for Z[*, 0]).

If Y is a two-dimensional array, each element of Y specifies the y-coordinate of the
corresponding point in Z (Yij specifies the y-coordinate of Zij).
What’s New in IDL 6.0 ISURFACE

196 Chapter 3: New IDL Routines
Z

A vector or two-dimensional array specifying the data to be displayed.

If Z is a vector,

• If X and Y are vectors and have the same length as Z:

Each element of Z specifies the z-coordinates of a point in space (e.g., Z[0]
specifies the z-coordinate for X[0] and Y[0]). The gridding wizard will
automatically launch in this case.

If Z is a two-dimensional array,

• If X and Y are provided:

The surface is defined as a function of the (x, y) locations specified by their
contents.

• If X and Y are not provided:

The surface is generated as a function of the array indices of each element of Z.

Keywords

Note
Because keywords to the ISURFACE routine correspond to the names of registered
properties of the iSurface tool, the keyword names must be specified in full, without
abbreviation.

BOTTOM

Set this keyword to an RGB color for drawing the bottom of the surface. Set this
keyword to a scalar to draw the bottom with the same color as the top.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 197
Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to the color to be used as the foreground color for this model. The
color is specified as an RGB vector. The default is [225, 184, 0].

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

DEPTH_OFFSET

Set this keyword to an integer value that specifies an offset in depth to be used when
rendering filled primitives. This offset is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are “Z-Buffer units,” where a value of 1 is used to specify a distance that
corresponds to a single step in the device’s Z-Buffer.

Use DEPTH_OFFSET to always cause a filled primitive to be rendered slightly
deeper than other primitives, independent of model transforms. This is useful for
avoiding stitching artifacts caused by rendering lines or polygons on top of other
polygons at the same depth.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
“layering” complex scenes with multiple DEPTH_OFFSET values. It is safest to
use only a DEPTH_OFFSET value of 0, the default, and one other non-zero value,
such as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used.
This can lead to portability problems because a set of DEPTH_OFFSET values may
produce better results on one machine than on another. Using IDL’s software
renderer will help improve the cross-platform consistency of scenes that use
DEPTH_OFFSET.
What’s New in IDL 6.0 ISURFACE

198 Chapter 3: New IDL Routines
Note
DEPTH_OFFSET has no effect unless the value of the STYLE keyword is 2 or 6
(Filled or LegoFilled).

EXTENDED_LEGO

Set this keyword to force the iSurface tool to display the last row and column of data
when lego display styles are selected.

HIDDEN_LINES

Set this keyword to draw point and wireframe surfaces using hidden line (point)
removal. By default, hidden line removal is disabled.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

LINESTYLE

Set this keyword to indicate the line style that should be used to draw the surface
lines. The value can be either an integer value specifying a pre-defined line style, or a
two-element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTYLE keyword equal to one of the
following integer values:

• 0 = Solid line (the default)

• 1 = dotted

• 2 = dashed

• 3 = dash dot
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 199
• 4 = dash dot dot dot

• 5 = long dash

• 6 = no line drawn

To define your own stippling pattern, specify a two-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1’s or 0’s in the
bitmask should be repeated. (That is, if three consecutive 0’s appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 ≤ repeat ≤ 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LINESTYLE = [2, 'F0F0'X] describes a dashed line (8 bits on, 8
bits off, 8 bits on, 8 bits off).

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The name is
used for tool-related display purposes only–as the root of the hierarchy shown in the
Tool Browser, for example.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword equal to one to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

RGB_TABLE

Set this keyword to a two-dimensional array containing RGB triplets defining the
colors to be used in a color indexed texture image or by vertex colors. The values
should be within the range of 0 ≤ value ≤ 255. The array must be a 3 by N array
where m must not exceed 256.
What’s New in IDL 6.0 ISURFACE

200 Chapter 3: New IDL Routines
SHADING

Set this keyword to an integer representing the type of shading to use if STYLE is set
to 2 (Filled).

• 0 = Flat (default): The color has a constant intensity for each face of the
surface, based on the normal vector.

• 1 = Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHOW_SKIRT

Set this keyword to enable skirt drawing. The default is to disable skirt drawing.

SKIRT

Set this keyword to the Z value at which a skirt is to be defined around the array. The
Z value is expressed in data units; the default is 0.0. If a skirt is defined, each point on
the four edges of the surface is connected to a point on the skirt which has the given Z
value, and the same X and Y values as the edge point. In addition, each point on the
skirt is connected to its neighbor. The skirt value is ignored if skirt drawing is
disabled (see SHOW_SKIRT above). IDL converts, maintains, and returns this data
as double-precision floating-point.

STYLE

Set this keyword to and integer value that indicates the style to be used to draw the
surface. Valid values are:

• 0 = Points

• 1 = Wire mesh

• 2 = Filled (the default)

• 3 = RuledXZ

• 4 = RuledYZ

• 5 = Lego

• 6 = LegoFilled: for outline or shaded and stacked histogram-style plots.
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 201
TEXTURE_ALPHA

Set the keyword to a two-dimensional array containing the alpha channel of an image
to be used as a texture image. Use of this keyword requires that TEXTURE_RED,
TEXTURE_GREEN, and TEXTURE_BLUE be set to arrays of identical size and
type.

TEXTURE_BLUE

Set the keyword to a two-dimensional array containing the blue channel of an image
to be used as a texture image. Use of this keyword requires that TEXTURE_RED and
TEXTURE_GREEN be set to arrays of identical size and type.

TEXTURE_GREEN

Set the keyword to a two-dimensional array containing the green channel of an image
to be used as a texture image. Use of this keyword requires that TEXTURE_RED and
TEXTURE_BLUE be set to arrays of identical size and type.

TEXTURE_HIGHRES

Set this keyword to cause texture tiling to be used as necessary to maintain the full
pixel resolution of the original texture image.

Setting this keyword is recommended if IDL is running on modern 3-D hardware and
resolution loss due to downscaling becomes problematic. If not set, and the texture
map is larger than the maximum resolution supported by the 3-D hardware, the
texture is scaled down to the maximum resolution supported by the 3-D hardware on
your system. The default value is 0.

TEXTURE_IMAGE

Set this keyword to an array containing an image to be texture mapped onto the
surface. If this keyword is omitted or set to a null object reference, no texture map is
applied and the surface is filled with the color specified by the COLOR or
VERTEX_COLORS property. The image array can be a two-dimensional array of
color indexes or a three-dimensional array specifying RGB values at each pixel (3 x n
x m, n x 3 x m, or n x m x 3). Setting TEXTURE_IMAGE to a three-dimensional
array contains an alpha channel (4 x n x m, n x 4 x m, or n x m x 4) allows you to
create a transparent iSurface object. The TEXTURE_IMAGE keyword will override
any values passed to TEXTURE_RED, TEXTURE_GREEN, TEXTURE_BLUE, or
TEXTURE_ALPHA.
What’s New in IDL 6.0 ISURFACE

202 Chapter 3: New IDL Routines
TEXTURE_INTERP

 Set this keyword to a nonzero value to indicate that bilinear sampling is to be used
with texture mapping. The default method is nearest-neighbor sampling.

TEXTURE_RED

Set the keyword to a two-dimensional array containing the red channel of an image to
be used as a texture image. Use of this keyword requires that TEXTURE_GREEN
and TEXTURE_BLUE be set to arrays of identical size and type.

THICK

Set this keyword to a value between 1.0 and 10.0, specifying the line thickness to use
to draw surface lines, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to specify a title for the tool. The title is displayed in the
title bar of the tool.

USE_TRIANGLES

Set this keyword to force the iSurface tool to use triangles instead of quads to draw
the surface and skirt.

VERT_COLORS

Set this keyword to a vector, two-dimensional array of equal size to Z, or a two-
dimensional array containing RGB triplets representing colors to be used at each
vertex. If this keyword is set to a vector or a two-dimensional array of equal size to Z,
these values are indices into a color table that can be specified by the RGB_TABLE
keyword. If the RGB_TABLE keyword is not set, a grayscale color is used. If more
vertices exist than elements in VERT_COLORS, the elements of VERT_COLORS
are cyclically repeated. If this keyword is omitted, the surface is drawn in the color
specified by the COLOR keyword or the default color.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 203
VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.
What’s New in IDL 6.0 ISURFACE

204 Chapter 3: New IDL Routines
[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black).

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 205
[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.
What’s New in IDL 6.0 ISURFACE

206 Chapter 3: New IDL Routines
[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 207
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis.
What’s New in IDL 6.0 ISURFACE

208 Chapter 3: New IDL Routines
ZERO_OPACITY_SKIP

Set this keyword to gain finer control over the rendering of textured surface pixels
(texels) with an opacity of 0 in the texture map. Texels with zero opacity do not affect
the color of a screen pixel since they have no opacity. If this keyword is set to 1, any
texels are “skipped” and not rendered at all. If this keyword is set to zero, the Z-buffer
is updated for these pixels and the display image is not affected as noted above. By
updating the Z-buffer without updating the display image, the surface can be used as
a clipping surface for other graphics primitives drawn after the current graphics
object. The default value for this keyword is 1.

Note
This keyword has no effect if no texture map is used or if the texture map in use
does not contain an opacity channel.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to load data into the iSurface
tool.

At the IDL Command Line, enter:

file = FILEPATH('surface.dat', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_BINARY(file, DATA_DIMS = [350, 450], DATA_TYPE = 2, $
ENDIAN = 'little')

ISURFACE, data, TITLE = 'Maroon Bells Elevation', $
COLOR = [255, 128, 0]

Place a title on the elevation axis of your plot by selecting the axis, right-clicking to
display the context menu, selecting Properties to display the property sheet, and
typing Elevation (m) in the Title field.
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 209
Use the Operations → Statistics... option to display the iTools Statistics dialog.
Within this dialog, observe the Z value’s Maximum, which is 4241 at [29, 253].
Close the iTools Statistics dialog by selecting File → Close.

Annotate your plot by selecting the Text Annotation tool, clicking near the top of the
highest peak in the display, and typing Highest Point (4241 m). Draw a line
annotation between the text annotation and the highest peak on the surface.

The following figure displays the output of this example:

Example 2

This example shows how to use the File → Open command to load binary data into
the iSurface tool.

At the IDL Command Line, enter:

ISURFACE

Select File → Open to display the Open dialog, then browse to find
idemosurf.dat in the examples/data directory in the IDL distribution, and click
Open.

Figure 3-11: Maroon Bells iSurface Example
What’s New in IDL 6.0 ISURFACE

210 Chapter 3: New IDL Routines
The Binary Template wizard is displayed. In the Binary Template, change File’s byte
ordering to Little Endian. Then, click New Field, and enter the following
information in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Float (32 bit)

• Number of Dimensions: 2

• 1st Dimension Size: 200

• 2nd Dimension Size: 200

Click OK to close the New Field dialog and the Binary Template dialog, and the
surface is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Insert a contour onto the surface by clicking the Surface Contour button on the
toolbar, then clicking and dragging on the surface to position the contour at the
desired height.

The following figure displays the output of this example:

Figure 3-12: Binary Surface Data iSurface Example
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 211
Example 3

This example shows how to use the File → Import command to load ASCII data into
the iSurface tool.

At the IDL Command Line, enter:

ISURFACE

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find irreg_grid1.txt in the
examples/data directory in the IDL distribution, and click Next>>.

3. At Step 3, select Surface and click Finish.

Then, the ASCII Template wizard is displayed.

1. At Step 1, click Next>> to accept the displayed Data Type/Range definitions.

2. At Step 2, click Next>> to accept the displayed Delimiter/Fields definitions.

3. At Step 3, click Finish to accept the displayed Field Specifications.

Note
For more information on using the ASCII Template to import data, see “Using the
ASCII_TEMPLATE Function” in Chapter 14 of the Using IDL manual.

At the iTool’s Create Visualization window, you have the option of launching the
Gridding wizard or not creating a visualization. Choose Launch the gridding
wizard and click Ok.

4. At Step 1, click Next>> to accept the interpolation of data values and
locations.

5. At Step 2, click Next>> to accept the dimensions, start and spacing.

6. At Step 3, select Inverse Distance as the gridding method, click Preview to
preview the possible results, and click Finish to display the surface.

Double-click the surface to display the Properties sheet, and change the Fill shading
setting from Flat to Gouraud.

Use the Rotate tool on the Toolbar to rotate the surface slightly forward to better
display the surface convolutions.
What’s New in IDL 6.0 ISURFACE

212 Chapter 3: New IDL Routines
The following figure displays the output of this example.

Version History

Introduced: 6.0

Figure 3-13: ASCII Surface Data iSurface Example
ISURFACE What’s New in IDL 6.0

Chapter 3: New IDL Routines 213
ITCURRENT

The ITCURRENT procedure is used to set the current tool in the IDL Intelligent
Tools system. This routine is used with the identifier of the tool to make it current in
the system. If the identifier is valid, the specified tool becomes current.

When a tool is set as current, the visible display or the focus state of the tool does not
change. Only the internal setting of the current tool changes.

Besides using this procedure to set the current tool, a tool is made current when it is
created or when it is placed in focus in the current windowing system.

This routine is written in the IDL language. Its source code can be found in the file
itcurrent.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITCURRENT, iToolID

Arguments

iToolID

The identifier of the existing iTool to be set as current.

Keywords

None.

Example

Enter the following at the IDL Command Line:

IPLOT, IDENTIFIER = PlotID1
current1 = ITGETCURRENT()
PRINT, 'The current tool is ', current1

An iPlot tool is created, and the newly created iPlot tool becomes the current tool.
Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/IPLOT_8
What’s New in IDL 6.0 ITCURRENT

214 Chapter 3: New IDL Routines
Enter the following at the IDL Command Line:

IPLOT, IDENTIFIER = PlotID2
current2 = ITGETCURRENT()
PRINT, 'The current tool is ', current2

A second iPlot tool is created, and this newly created iPlot tool becomes the current
tool. Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/IPLOT_9

Enter the following at the IDL Command Line:

ISURFACE, IDENTIFIER = SurfaceID1
current3 = ITGETCURRENT()
PRINT, 'The current tool is ', current3

An iSurface tool is created, and the newly created iSurface tool becomes the current
tool. Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/ISURFACE_5

Enter the following at the IDL Command Line:

ITCURRENT, PlotID1
current = ITGETCURRENT()
PRINT, 'The current tool is ', current
END

The iPlot tool created at the beginning of the example (PlotID1) becomes the current
tool. Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/IPLOT_8

Note that the system ID of the current tool (IPLOT_8) is the same as that of the
current tool at the beginning of the exercise.

Version History

Introduced: 6.0

See Also

ITDELETE, ITGETCURRENT, ITRESET
ITCURRENT What’s New in IDL 6.0

Chapter 3: New IDL Routines 215
ITDELETE

The ITDELETE procedure is used to delete a tool in the IDL Intelligent Tools
system. If a valid identifier is provided, the tool represented by the identifier is
destroyed. If no identifier is provided, the current tool is destroyed.

When a tool is destroyed, all resources specific to that tool are released and the tool
ceases to exist.

This routine is written in the IDL language. Its source code can be found in the file
itdelete.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITDELETE[, iToolID]

Arguments

iToolID

This optional argument contains the identifier for the specific iTool to delete. If not
provided, the current tool is destroyed.

Keywords

None.

Example

Enter the following at the IDL Command Line:

IPLOT, IDENTIFIER = PlotID1
ISURFACE, IDENTIFIER = SurfaceID1

Two tools are created: an iPlot tool and an iSurface tool.

Next, enter the following at the IDL Command Line:

ITDELETE, plotID1

The iPlot tool is deleted, leaving only the iSurface tool.
What’s New in IDL 6.0 ITDELETE

216 Chapter 3: New IDL Routines
Version History

Introduced: 6.0

See Also

ITCURRENT, ITGETCURRENT, ITRESET
ITDELETE What’s New in IDL 6.0

Chapter 3: New IDL Routines 217
ITGETCURRENT

The ITGETCURRENT function is used to get the identifier of the current tool in the
IDL Intelligent Tools system.

This routine is written in the IDL language. Its source code can be found in the file
itgetcurrent.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

Result = ITGETCURRENT()

Return Value

Returns the identifier of the current tool in the iTool system. If no tool exists, an
empty string ('') is returned.

Arguments

None.

Keywords

None.

Example

The following example line of code creates a plot tool:

IPLOT, SIN(FINDGEN(361)*!DTOR), COLOR = [0, 0, 255], THICK = 2

The resulting plot tool contains a blue sine function, with a line thickness of 2. To
overplot a cosine function on this display, the following lines of code are used:

idSin = ITGETCURRENT()
IPLOT, COS(FINDGEN(361)*!DTOR), COLOR = [0, 255, 0], THICK = 2, $

OVERPLOT = idSin
What’s New in IDL 6.0 ITGETCURRENT

218 Chapter 3: New IDL Routines
However, it is not necessary to use ITGETCURRENT to retrieve the current tool for
overplotting. The following method is also possible because the creation of a new
tool causes it to be set as current in the system. In this scenario, the commands to
generate the same display are:

IPLOT, SIN(FINDGEN(361)*!DTOR), COLOR = [0, 0, 255], THICK = 2
IPLOT, COS(FINDGEN(361)*!DTOR), COLOR = [0, 255, 0], THICK = 2, $

/OVERPLOT

Version History

Introduced: 6.0

See Also

ITCURRENT, ITDELETE, ITRESET
ITGETCURRENT What’s New in IDL 6.0

Chapter 3: New IDL Routines 219
ITREGISTER

The ITREGISTER procedure is used to register tool object classes or other iTool
functionality with the IDL Intelligent Tools system.

This routine is written in the IDL language. Its source code can be found in the file
itregister.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITREGISTER, Name, ItemName [, TYPES=string] [, /UI_PANEL]
[, /UI_SERVICE] [, /VISUALIZATION]

Arguments

Name

A string containing the name used to refer to the associated class once registration is
completed. Subsequent calls to create items of this type will use this name to identify
the associated class.

ItemName

A string containing the class name of the object class or user interface routine that is
to be associated with Name. When an item of name Name is requested from the
system, an object of this class is created or the specified routine is called.

Keywords

Note
Keywords supplied in the call to ITREGISTER but not listed here are passed
directly to the underlying objects’ registration routines.

TYPES

This keyword is only used in conjunction with the UI_PANEL keyword.

Set this keyword equal to a string or string array containing iTool types with which
the UI panel should be associated. When the registered type of a UI panel matches
the registered type of an iTool, the panel will be displayed as part of the iTool’s
interface.
What’s New in IDL 6.0 ITREGISTER

220 Chapter 3: New IDL Routines
UI_PANEL

Set this keyword to indicate that a UI panel is being registered with the system. When
this keyword is set, the value of Name is the string used to refer to the panel and
ItemName is the routine that should be called when the panel is created.

To specify that the UI panel is associated with a particular iTool or iTools, set the
TYPES keyword to the iTool types that should expose this panel.

UI_SERVICE

Set this keyword to indicate that a UI service is being registered with the system.
When this keyword is set, the value of Name is the string used to refer to the UI
service and ItemName is the routine that should be called to execute the service.

VISUALIZATION

Set this keyword to indicate that a visualization is being registered with the system.
When this keyword is set, the value of Name is the string used to refer to the
visualization type, and ItemName is the name of the visualization type’s class
definition routine.

Examples

Suppose you have an iTool class definition file named myTool__define.pro,
located in a directory included in IDL’s !PATH system variable. Register this class
with the iTool system with the following command:

ITREGISTER, 'My First Tool', 'myTool'

Tools defined by the myTool class definition file can now be created by the iTool
system by specifying the tool name My First Tool.

Similarly, suppose you have a user interface service defined in a file named
myUIFileOpen.pro. Register this UI service with the iTool system with the
following command:

ITREGISTER, 'My File Open', 'myUIFileOpen', /UI_SERVICE

Finally, suppose you have a user interface panel defined in a file named
myPanel.pro, and that you want this panel to be added to the user interface of
iTools registered with the TYPES property set to MYTOOL. Register this UI panel with
the iTool system with the following command:

ITREGISTER, 'My Panel', 'myPanel', /UI_PANEL, TYPES = 'MYTOOL'
ITREGISTER What’s New in IDL 6.0

Chapter 3: New IDL Routines 221
Version History

Introduced: 6.0

See Also

Chapter 5, “Creating an iTool” in the iTool Developer’s Guide manual.
What’s New in IDL 6.0 ITREGISTER

222 Chapter 3: New IDL Routines
ITRESET

The ITRESET procedure resets the IDL iTools session. When called, all active tools
and overall system management is destroyed and associated resources released.

This class is written in the IDL language. Its source code can be found in the file
itreset.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

ITRESET[, /NO_PROMPT]

Arguments

None

Keywords

NO_PROMPT

Set this keyword to disable prompting the user before resetting the system. If this
keyword is set, the user is not presented with a prompt and the reset is performed
immediately.

Examples

The iTool Data Manager system maintains your data during the entire IDL session,
unless ITRESET is used. This example shows how the data is maintained and how
ITRESET is used to clear the iTool Data Manager.

Read in plot data and load it into an iPlot tool at the IDL Command Line:

file = FILEPATH('dirty_sine.dat', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_BINARY(file, DATA_DIMS = [256, 1])
IPLOT, data

Delete this tool with the ITDELETE procedure at the IDL Command Line:

ITDELETE
ITRESET What’s New in IDL 6.0

Chapter 3: New IDL Routines 223
Read in surface data and load it into an iSurface tool at the IDL Command Line:

file = FILEPATH('elevbin.dat', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_BINARY(file, DATA_DIMS = [64, 64])
ISURFACE, data

Use Window → Data Manager... to access the Data Manager Browser. The browser
contains both plot and surface parameters. Although the iPlot tool was deleted, its
data remains in the Data Manager. Click Dismiss.

Use File → New → iPlot to create an empty iPlot tool. If you want to load the plot
data in the Data Manager into this tool, use Insert → Visualization to access the
Insert Visualization dialog, which allows you to specify the plot data to be displayed.

At the IDL Command Line, enter:

ITRESET, /NO_PROMPT

The two iTools are deleted and the data in the Data Manager is released. To verify the
data in released, create an empty iSurface tool at the IDL Command Line:

ISURFACE

Use Window → Data Manager... to access the Data Manager Browser. No data
appears in the browser. The iTool Data Manger in empty. Click Dismiss.

At the IDL Command Line, enter:

ITRESET, /NO_PROMPT

Version History

Introduced: 6.0

See Also

ITCURRENT, ITDELETE, ITGETCURRENT
What’s New in IDL 6.0 ITRESET

224 Chapter 3: New IDL Routines
IVOLUME

The IVOLUME procedure creates an iTool and associated user interface (UI)
configured to display and manipulate volume data.

Note
If no arguments are specified, the IVOLUME procedure creates an empty Volume
tool.

This routine is written in the IDL language. Its source code can be found in the file
ivolume.pro in the lib/itools subdirectory of the IDL distribution.

Syntax

IVOLUME[, Vol0[, Vol1][, Vol2, Vol3]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable]
[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [. VIEW_NUMBER=integer]
[, {X | Y | Z}RANGE=[min, max]]

iTool Volume Keywords: [, /AUTO_RENDER]
[, RENDER_EXTENTS={0 | 1 | 2}] [, RENDER_QUALITY={1 | 2}]
[, SUBVOLUME=[xmin, ymin, zmin, xmax, ymax, zmax]]
[, VOLUME_DIMENSIONS=[width, height, depth]]
[, VOLUME_LOCATION=[x, y, z]]

Volume Object Keywords: [, AMBIENT=RGB vector]
[, BOUNDS=[xmin, ymin, zmin, xmax, ymax, zmax]] [, CLIP_PLANES=array]
[, COMPOSITE_FUNCTION={0 | 1 | 2 | 3}] [, CUTTING_PLANES=array]
[, DEPTH_CUE=[zbright, zdim]] [, /HIDE] [, HINTS={0 | 1 | 2 | 3}]
[, /INTERPOLATE] [, /LIGHTING_MODEL] [, OPACITY_TABLE0=byte array of
256 elements] [, OPACITY_TABLE1=byte array of 256 elements]
[, RENDER_STEP=[x, y, z]] [, RGB_TABLE0=byte array of 256 by 3 or 3 by 256
elements] [, RGB_TABLE1=byte array of 256 by 3 or 3 by 256 elements]
[, /TWO_SIDED] [, /ZBUFFER] [, ZERO_OPACITY_SKIP={0 | 1}]
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 225
Axis Object Keywords: [, {X | Y | Z}GRIDSTYLE={0 | 1 | 2 | 3 | 4 | 5 | 6}]
[, {X | Y | Z}MAJOR=integer] [, {X | Y | Z}MINOR=integer]
[, {X | Y | Z}SUBTICKLEN=ratio] [, {X | Y | Z}TEXT_COLOR=RGB vector]
[, {X | Y | Z}TICKFONT_INDEX={0 | 1 | 2 | 3 | 4}]
[, {X | Y | Z}TICKFONT_SIZE=integer]
[, {X | Y | Z}TICKFONT_STYLE={0 | 1 | 2 | 3}]
[, {X | Y | Z}TICKFORMAT=string or string array]
[, {X | Y | Z}TICKINTERVAL=value] [, {X | Y | Z}TICKLAYOUT={0 | 1 | 2}]
[, {X | Y | Z}TICKLEN=value] [, {X | Y | Z}TICKNAME=string array]
[, {X | Y | Z}TICKUNITS=string] [, {X | Y | Z}TICKVALUES=vector]
[, {X | Y | Z}TITLE=string]

Arguments

Note
The volume data provided in the Vol0, Vol1, Vol2, and Vol3 arguments are scaled into
byte values (ranging from 0 to 255) with the BYTSCL function to facilitate using
the volume data as indices into the RGB and OPACITY tables. This scaling is done
for display purposes only; the iVolume tool maintains the original data as supplied
with the arguments for use in other operations. The minimum and maximum values
used by the BYTSCL function may be adjusted in the volume’s property sheet. By
default, the tool uses the minimum and maximum values of all volume parameters
to uniformly byte-scale the data.

Vol0, Vol1, Vol2, Vol3

A three-dimensional array of any numeric type containing volume data. Arrays of
strings, structures, object references, and pointers are not allowed. If more than one
volume is specified, they must all have the same dimensions.

The number of volumes present and the value of the COMPOSITE_FUNCTION
keyword determine how the volume data is rendered by the iVolume tool. The
number of volume arguments determine how the src and srcalpha values for the
COMPOSITE_FUNCTION are computed:

• If Vol0 is the only argument present, the values of src and srcalpha are
taken directly from the RGB and OPACITY tables, as indexed by each volume
data sample:

src = RGB_TABLE0[VOL0]
srcalpha = OPACITY_TABLE0[VOL0]
What’s New in IDL 6.0 IVOLUME

226 Chapter 3: New IDL Routines
• If Vol0 and Vol1 are the only arguments present, the two volumes are blended
together using independent tables:

src = (RGB_TABLE0[VOL0]*RGB_TABLE1[VOL1])/256
srcalpha = (OPACITY_TABLE0[VOL0]*OPACITY_TABLE1[VOL1])/256

• If all the arguments are present, Vol0 indexes the red channel of
RGB_TABLE0, Vol1 indexes the green channel of RGB_TABLE0, and Vol2
indexes the blue channel of RGB_TABLE0. The Vol3 argument indexes
OPACITY_TABLE0:

src = (RGB_TABLE[VOL0, 0], RGB_TABLE[VOL1, 1], $
RGB_TABLE[VOL2, 2])/256

srcalpha = (OPACITY_TABLE0[VOL3])/256.

Note
If all the arguments are present, the composite function cannot be set to the
average-intensity projection (COMPOSITE_FUNCTION = 3).

Keywords

Note
Because keywords to the IVOLUME routine correspond to the names of registered
properties of the iVolume tool, the keyword names must be specified in full, without
abbreviation.

AMBIENT

Use this keyword to set the color and intensity of the volume’s base ambient lighting.
Color is specified as an RGB vector. The default is [255, 255, 255]. AMBIENT is
applicable only when LIGHTING_MODEL is set.

AUTO_RENDER

Set this keyword to 1 to always render the volume. The default is to not render the
volume each time the tool window is drawn.

BOUNDS

Set this keyword to a six-element vector of the form [xmin, ymin, zmin, xmax, ymax,
zmax], which represents the sub-volume to be rendered. This keyword is the same as
the SUBVOLUME keyword.
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 227
CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz + D = 0. Portions of this
object that fall in the half space Ax + By + Cz + D > 0 will be clipped. By default, the
value of this keyword is a scalar (-1) indicating that no clipping planes are to be
applied.

Note
Clipping planes are equivalent to cutting planes (refer to the CUTTING_PLANES
keyword). The CUTTING_PLANES will be applied first, then the CLIP_PLANES
(until a maximum number of planes is reached).

Note
A window is only able to support a limited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COMPOSITE_FUNCTION

The composite function determines the value of a pixel on the viewing plane by
analyzing the voxels falling along the corresponding ray, according to one of the
following compositing functions:

• 0 = Alpha (default): Alpha-blending. The recursive equation

dest' = src * srcalpha + dest * (1 - srcalpha)

is used to compute the final pixel color.

• 1 = MIP: Maximum intensity projection. The value of each pixel on the
viewing plane is set to the brightest voxel, as determined by its opacity. The
most opaque voxel’s color appropriation is then reflected by the pixel on the
viewing plane.
What’s New in IDL 6.0 IVOLUME

228 Chapter 3: New IDL Routines
• 2 = Alpha sum: Alpha-blending. The recursive equation

dest' = src + dest * (1 - srcalpha)

is used to compute the final pixel color. This equation assumes that the color
tables have been pre-multiplied by the opacity tables. The accumulated values
can be no greater than 255.

• 3 = Average: Average-intensity projection. The resulting image is the average
of all voxels along the corresponding ray.

Note
This option (COMPOSITE_FUNCTION = 3) is not supported for 4-channel
volumes.

CUTTING_PLANES

Set this keyword to a floating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{nx, ny,
nz, D}, ...} where (nx)X+(ny)Y+(nz)Z+ D > 0, and (X, Y, Z) are the voxel coordinates.
To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

DEPTH_CUE

Set this keyword to a two-element floating-point array [zbright, zdim] specifying the
near and far Z planes between which depth cueing is in effect.

Depth cueing causes an object to appear to fade into the background color of the view
object with changes in depth. If the depth of an object is further than zdim (that is, if
the object’s location in the Z direction is farther from the origin than the value
specified by zdim), the object will be painted in the background color.

Similarly, if the object is closer than the value of zbright, the object will appear in its
“normal” color. Anywhere in-between, the object will be a blend of the background
color and the object color. For example, if the DEPTH_CUE property is set to [-1, 1],
an object at the depth of 0.0 will appear as a 50% blend of the object color and the
view color.

The relationship between Zbright and Zdim determines the result of the rendering:

• Zbright < Zdim: Rendering darkens with depth.

• Zbright > Zdim: Rendering brightens with depth.

• Zbright = Zdim: Disables depth cueing.
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 229
You can disable depth cueing by setting zbright = zdim. The default is [0.0, 0.0].

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

HIDE

Set this keyword to a boolean value indicating whether the volume should be drawn:

• 0 = Draw graphic (the default)

• 1 = Do not draw graphic

HINTS

Set this keyword to specify one of the following acceleration hints:

• 0 = Disables all acceleration hints (default).

• 1 = Enables Euclidean distance map (EDM) acceleration. This option
generates a volume map containing the distance from any voxel to the nearest
non-zero opacity voxel. The map is used to speed ray casting by allowing the
ray to jump over open spaces. It is most useful with sparse volumes. After
setting the EDM hint, the draw operation generates the volume map; this
process can take some time. Subsequent draw operations will reuse the
generated map and may be much faster, depending on the volume’s sparseness.
A new map is not automatically generated to match changes in opacity tables
or volume data (for performance reasons). The user may force recomputation
of the EDM map by setting the HINTS property to 1 again.

• 2 = Enables the use of multiple CPUs for volume rendering if the platforms
used support such use. If HINTS is set to 2, IDL will use all the available (up
to 8) CPUs to render portions of the volume in parallel.

• 3 = Selects the two acceleration options described above.

IDENTIFIER

Set this keyword to a named IDL variable that will contain the iToolID for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.
What’s New in IDL 6.0 IVOLUME

230 Chapter 3: New IDL Routines
INTERPOLATE

Set this keyword to indicate that trilinear interpolation is to be used to determine the
data value for each step on a ray. Setting this keyword improves the quality of images
produced, at the cost of more computing time. especially when the volume has low
resolution with respect to the size of the viewing plane. Nearest neighbor sampling is
used by default.

LIGHTING_MODEL

Set this keyword to use the current lighting model during rendering in conjunction
with a local gradient evaluation.

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sources
increases the rendering time.

LOCATION

Set this keyword to a two-element vector of the form [x, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The name is
used for tool-related display purposes only–as the root of the hierarchy shown in the
Tool Browser, for example.

OPACITY_TABLE0

Set this keyword to a 256-element byte array to specify an opacity table for Vol0 if
Vol0 or Vol0 and Vol1 are present. If all the volume arguments are present, this
keyword represents the opacity of the resulting RGBA volume. A value of 0 indicates
complete transparency and a value of 255 indicates complete opacity. The default
table is a linear ramp.

OPACITY_TABLE1

Set this keyword to a 256-element byte array to specify an opacity table for Vol1
when Vol0 and Vol1 are present. A value of 0 indicates complete transparency and a
value of 255 indicates complete opacity. The default table is a linear ramp.
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 231
OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, a new tool is created.

RENDER_EXTENTS

Set this keyword to draw a boundary around the rendered volume. The default
(RENDER_EXTENTS = 2) is to draw a translucent boundary box. Possible values
for this keyword are:

• 0 = Do not draw anything around the volume.

• 1 = Draw a wireframe around the volume.

• 2 = Draw a translucent box around the volume

RENDER_STEP

Set this keyword to a three element vector of the form [x, y, z] to specify the stepping
factor through the voxel matrix. This keyword is only valid if render quality is set to
high (RENDER_QUALITY = 2). The default render step is [1, 1, 1].

RENDER_QUALITY

Set this keyword to determine the quality of the rendered volume. The default
(RENDER_QUALITY = 1) is low quality. Possible values for this keyword are:

• 1 = Low - Renders volume with a stack of two-dimensional texture maps.

• 2 = High - Use ray-casting rendering, see the COMPOSITE_FUNCTION for
more details.

RGB_TABLE0

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values to specify
a color table for Vol0 if Vol0 or Vol0 and Vol1 are present. If all the arguments are
present, this keyword represents the RGB color values of all of these volumes. The
default is a linear ramp

RGB_TABLE1

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values to specify
a color table for Vol1 when Vol0 and Vol1 are present. The default is a linear ramp.
What’s New in IDL 6.0 IVOLUME

232 Chapter 3: New IDL Routines
SUBVOLUME

Set this keyword to a six-element vector of the form [xmin, ymin, zmin, xmax, ymax,
zmax], which represents the sub-volume to be rendered. This keyword is the same as
the BOUNDS keyword.

TITLE

Set this keyword to a string to specify the title for this particular tool. The title is
displayed in the title bar of the tool.

TWO_SIDED

Set this keyword to force the lighting model to use a two-sided voxel gradient. The
two-sided gradient is different from the one-sided gradient (default) in that the
absolute value of the inner product of the light direction and the surface gradient is
used instead of clamping to 0.0 for negative values.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword is only used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID is ignored).

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view is the last one in the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 233
VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword is ignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless /OVERPLOT is set.

VOLUME_DIMENSIONS

A 3-element vector specifying the volume dimensions in terms of user data units. For
example, specifying [0.1, 0.1, 0.1] would cause the volume to be rendered into a
region that is 0.1 data units long on each side of the volume cube. If this parameter is
not specified, the volume is rendered into a region the same size as the number of
samples, with an origin of [0, 0, 0]. In this case, a volume with sample size of [20, 25,
20] would render into the region [0:19, 0:24, 0:19] in user data units. Use the
VOLUME_LOCATION keyword to specify a different origin.

VOLUME_LOCATION

A 3-element vector specifying the volume location in user data units. Use this
keyword to render the volume so that the first sample voxel appears at the specified
location, instead of at [0, 0, 0], the default. Specify the location in terms of
coordinates after the application of the VOLUME_DIMENSIONS values. For
example, if the value of the VOLUME_DIMENSIONS keyword is [0.1, 0.1, 0.1] and
you want the volume to be centered at the origin, set the VOLUME_LOCATION
keyword to [-0.05, -0.05, -0.05].

[XYZ]MAJOR

Set this keyword to an integer representing the number of major tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is -1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.
What’s New in IDL 6.0 IVOLUME

234 Chapter 3: New IDL Routines
[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.

[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
value is [0, 0, 0] (black).

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

• 0 = Helvetica

• 1 = Courier

• 2 = Times

• 3 = Symbol

• 4 = Hershey

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

• 0 = Normal

• 1 = Bold

• 2 = Italic

• 3 = Bold Italic
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 235
[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of a function to be used to format the tick mark labels. If an
array is provided, each string corresponds to a level of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it is interpreted as the name of a
callback function to be used to generate tick mark labels.

If TICKUNITS are not specified:

• The callback function is called with three parameters: Axis, Index, and Value,
where:

• Axis is the axis number: 0 for X axis, 1 for Y axis, 2 for Z axis

• Index is the tick mark index (indices start at 0)

• Value is the data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

• Axis, Index, and Value are the same as described above.

• Level is the index of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time labels.

[XYZ]TICKINTERVAL

Set this keyword to a floating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XYZ]MAJOR). The value of
this keyword takes precedence over the value set for the [XYZ]MAJOR keyword.

For example, if TICKUNITS = ['S', 'H', 'D'], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.
What’s New in IDL 6.0 IVOLUME

236 Chapter 3: New IDL Routines
[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

• 0 = The axis line, major tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. This is the default tick layout
style.

• 1 = Only the labels for the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

• 2 = Each major tick interval is outlined by a box. The tick labels are positioned
within that box (left-aligned). For the first axis level only, the major and minor
tick marks will also be drawn.

Note
For all tick layout styles, at least one tick label will appear on each level of the axis
(even if no major tick marks fall along the axis line). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is 0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axis tick labeling. If more than one unit is provided, the axis will be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 237
Valid unit strings include:

• "Numeric"

• "Years"

• "Months"

• "Days"

• "Hours"

• "Minutes"

• "Seconds"

• "Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

• ""- Use the empty string to indicate that no tick units are being explicitly set.
This implies that a single axis level will be drawn using the "Numeric" unit.
This is the default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value strings is also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS = 'Days').

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis.
What’s New in IDL 6.0 IVOLUME

238 Chapter 3: New IDL Routines
ZBUFFER

Set this keyword to clip the rendering to the current Z-buffer and then update the
buffer.

ZERO_OPACITY_SKIP

Set this keyword to skip voxels with an opacity of 0. This keyword can increase the
output contrast of MIP (MAXIMUM_INTENSITY) projections by allowing the
background to show through. If this keyword is set, voxels with an opacity of zero
will not modify the Z-buffer. The default (not setting the keyword) continues to
render voxels with an opacity of zero.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported via the File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data via the iTool file menu, refer to “Data Import Methods” in Chapter 2
of the iTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to bring data into the
iVolume tool.

At the IDL Command Line, enter:

file = FILEPATH('clouds3d.dat', $
SUBDIRECTORY = ['examples', 'data'])

RESTORE, file
IVOLUME, clouds

Derive an interval volume by selecting Operations → Volume → Interval Volume.
In the Interval Volume Value Selector dialog, change the minimum value to 0.2 and
the Decimate: % of original surface slider to 20, then click OK.
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 239
The following figure displays the output of this example:

Example 2

This example shows how to use the iTool File → Open command to load binary data
into the iVolume tool.

At the IDL Command Line, enter:

IVOLUME

Select File → Open to display the Open dialog, then browse to find head.dat in the
examples/data directory in the IDL distribution, and click Open.

In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 3

• 1st Dimension Size: 80

Figure 3-14: Cloud Interval Volume iVolume Example
What’s New in IDL 6.0 IVOLUME

240 Chapter 3: New IDL Routines
• 2nd Dimension Size: 100

• 3rd Dimension Size: 57

Click OK to close the New Field dialog and the Binary Template dialog, and the
image is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Select Operations → Volume → Isosurface, and insert an isosurface with a value of
60, decimated to 20% of the original surface.

The following figure displays the output of this example:

Figure 3-15: Human Head MRI Isosurface iVolume Example
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 241
Example 3

This example shows how to use the File → Import command to load binary data into
the iVolume tool.

At the IDL Command Line, enter:

IVOLUME

Select File → Import to display the IDL Import Data wizard.

1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browse to find jet.dat in the examples/data
directory in the IDL distribution, and click Next>>.

3. At Step 3, select Volume and click Finish.

The Binary Template wizard is displayed. In the Binary Template, change File’s byte
ordering to Little Endian. Then, click New Field, and enter the following
information in the New Field dialog:

• Field Name: data (or a name of your choosing)

• Type: Byte (unsigned 8-bits)

• Number of Dimensions: 3

• 1st Dimension Size: 81

• 2nd Dimension Size: 40

• 3rd Dimension Size: 101

Click OK to close the New Field dialog and the Binary Template dialog, and the
volume is displayed.

Select Operations → Volume → Image Plane to display a plane in the x-direction.
Double-click on the plane to access its properties through the property sheet. Change
the Orientation setting to Z. You can drag the image to see it at different z values by
clicking on the edge of the image plane.
What’s New in IDL 6.0 IVOLUME

242 Chapter 3: New IDL Routines
The following figure displays the output of this example:

Example 4

This example shows how to use a second volume argument to cut away a section of
the first volume argument.

First, load the MRI head data into IDL. At the IDL Command Line, enter:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'])
data0 = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

Then, create the second volume that will cut away the upper left corner of the head.
At the IDL Command Line, enter:

data1 = BYTARR(80, 100, 57) + 1B
data1[0:39, *, 28:56] = 0B

Derive the color and opacity tables for the second volume. At the IDL Command
Line, enter:

rgbTable1 = [[BYTARR(256)], [BYTARR(256)], [BYTARR(256)]]
rgbTable1[1, *] = [255, 255, 255]
opacityTable1 = BYTARR(256)
opacityTable1[1] = 255

Figure 3-16: Plasma Jet Image Plane iVolume Example
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 243
Now, display the two volumes. At the IDL Command Line, enter:

IVOLUME, data0, data1, RGB_TABLE1 = rgbTable1, $
OPACITY_TABLE1 = opacityTable1, /AUTO_RENDER

The following figure displays the output of this example:

Example 5

This example shows how to use all the volume arguments to display an RGB (Red,
Green, Blue) volume.

First, create the volumes to contain primary colors (black, red, green, blue, yellow,
cyan, magenta, and white) in each corner. At the IDL Command Line, enter:

vol0 = BYTARR(32, 32, 32)
vol1 = BYTARR(32, 32, 32)
vol2 = BYTARR(32, 32, 32)
vol3 = BYTARR(32, 32, 32)
vol0[0:15, *, *] = 255
vol1[*, 0:15, *] = 255
vol2[*, *, 0:15] = 255
vol3[*, *, *] = 128

Figure 3-17: Cut Away iVolume Example
What’s New in IDL 6.0 IVOLUME

244 Chapter 3: New IDL Routines
Then, derive the color and opacity tables. At the IDL Command Line, enter:

rgbTable = [[BYTARR(256)], [BYTARR(256)], [BYTARR(256)]]
opacityTable = BINDGEN(256)

Now, display the two volumes. At the IDL Command Line, enter:

IVOLUME, vol0, vol1, vol2, vol3, RGB_TABLE0 = rgbTable, $
OPACITY_TABLE0 = opacityTable, /AUTO_RENDER

The following figure displays the output of this example:

Note
The white corner of this example volume is actually gray to distinguish it from the
white background.

Version History

Introduced: 6.0

Figure 3-18: RGB iVolume Example
IVOLUME What’s New in IDL 6.0

Chapter 3: New IDL Routines 245
LOGICAL_AND

The LOGICAL_AND function performs a logical AND operation on its arguments.
It returns True (1) if both of its arguments are non-zero (non-NULL for strings and
heap variables), or False (0) otherwise.

The LOGICAL_AND function is similar to the AND operator, except that it
performs a logical “and” rather than a bitwise “and” on its arguments.

Note
LOGICAL_AND always returns either 0 or 1, unlike the AND operator, which
performs a bitwise AND operation on integers, and returns one of the two
arguments for other types.

Unlike the && operator, LOGICAL_AND accepts multi-element arrays as its
arguments. In addition, where the && operator short-circuits if it can determine the
result by evaluating only the first argument, all arguments to a function are always
evaluated.

Syntax

Result = LOGICAL_AND(Arg1, Arg2)

Return Value

Integer zero (false) or one (true) if both arguments are scalars, or an array of zeroes
and ones if either argument is an array.

Arguments

Arg1, Arg2

The expressions on which the logical AND operation is to be carried out. The
arguments can be scalars or arrays of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
What’s New in IDL 6.0 LOGICAL_AND

246 Chapter 3: New IDL Routines
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix D, “Thread Pool
Keywords” for details.

Example

At the IDL Command line, enter:

PRINT, LOGICAL_AND(2,4), LOGICAL_AND(2,0), LOGICAL_AND(0,4), $
LOGICAL_AND(0,0)

IDL Prints:

1 0 0 0

Version History

Introduced: 6.0

See Also

“Logical Operators” in the Building IDL Applications manual, “Bitwise Operators”
in the Building IDL Applications manual, LOGICAL_OR, LOGICAL_TRUE
LOGICAL_AND What’s New in IDL 6.0

Chapter 3: New IDL Routines 247
LOGICAL_OR

The LOGICAL_OR function performs a logical OR operation on its arguments. It
returns True (1) if either of its arguments are non-zero (non-NULL for strings and
heap variables), and False (0) otherwise.

The LOGICAL_OR function is similar to the OR operator, except that it performs a
logical “or” rather than a bitwise “or” on its arguments.

Note
LOGICAL_OR always returns either 0 or 1, unlike the OR operator, which
performs a bitwise OR operation on integers, and returns one of the two arguments
for other types.

Unlike the || operator, LOGICAL_OR accepts multi-element arrays as its
arguments. In addition, where the || operator short-circuits if it can determine the
result by evaluating only the first argument, all arguments to a function are always
evaluated.

Syntax

Result = LOGICAL_OR(Arg1, Arg2)

Return Value

Integer zero (false) or one (true) if both operands are scalars, or an array of zeroes and
ones if either operand is an array.

Arguments

Arg1, Arg2

The expressions on which the logical OR operation is to be carried out. The
arguments can be scalars or arrays of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
What’s New in IDL 6.0 LOGICAL_OR

248 Chapter 3: New IDL Routines
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix D, “Thread Pool
Keywords” for details.

Example

At the IDL Command Line, enter:

PRINT, LOGICAL_OR(2,4), LOGICAL_OR(2,0), LOGICAL_OR(0,4), $
LOGICAL_OR(0,0)

IDL Prints:

1 1 1 0

Version History

Introduced: 6.0

See Also

“Logical Operators” in the Building IDL Applications manual, “Bitwise Operators”
in the Building IDL Applications manual, LOGICAL_AND, LOGICAL_TRUE
LOGICAL_OR What’s New in IDL 6.0

Chapter 3: New IDL Routines 249
LOGICAL_TRUE

The LOGICAL_TRUE function returns True (1) if its arguments are non-zero (non-
NULL for strings and heap variables), and False (0) otherwise.

Note
For a given argument, the value returned by LOGICAL_TRUE is the opposite of
the value returned by the ~ operator.

Syntax

Result = LOGICAL_TRUE(Arg)

Return Value

Integer zero (false) or one (true) if the argument is a scalar, or an array of zeroes and
ones if the argument is an array.

Arguments

Arg

The expression on which the logical truth evaluation is to be carried out. The
argument can be a scalar or an array of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the !CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix D, “Thread Pool
Keywords” for details.
What’s New in IDL 6.0 LOGICAL_TRUE

250 Chapter 3: New IDL Routines
Example

At the IDL Command Line, enter:

PRINT, LOGICAL_TRUE(2), LOGICAL_TRUE(0)

IDL Prints:

1 0

Version History

Introduced: 6.0

See Also

“Logical Operators” in the Building IDL Applications manual, “Bitwise Operators”
in the Building IDL Applications manual, KEYWORD_SET, LOGICAL_AND,
LOGICAL_OR
LOGICAL_TRUE What’s New in IDL 6.0

Chapter 3: New IDL Routines 251
PATH_CACHE

The PATH_CACHE procedure is used to control IDL’s use of the path cache. By
default, as IDL searches directories included in the !PATH system variable for .pro
or .sav files to compile, it creates an in-memory list of all .pro and .sav files
contained in each directory. When IDL later searches for a .pro or .sav file, before
attempting to open the file in a given directory, IDL checks the path cache to
determine whether the directory has already been cached. If the directory is included
in the cache, IDL uses the cached information to determine whether the file will be
found in that directory, and will only attempt to open the file there if the cache tells it
that the file exists. By eliminating unnecessary attempts to open files, the path cache
speeds the path searching process.

The path cache is enabled by default, and in almost all cases its operation is
transparent to the IDL user, save for the boost in path searching speed it provides.
Because the cache automatically adjusts to changes made to IDL’s path, use of
PATH_CACHE should not be necessary in typical IDL operation. It is provided to
allow complete control over the details of how and when the caching operation is
performed.

• For information on when the path cache is not used, see “Situations in which
IDL will not use the Path Cache” on page 253.

• For information on disabling the path cache, see “Disabling the Path Cache”
on page 254.

Note
Prior to IDL 6.0, IDL did not use a path cache. Aside from the improvement in
performance, the behavior of IDL with the path cache is identical to that without in
almost all cases. The rare cases in which it differs, and options for disabling its use,
are discussed in “Options for Avoiding Use of the Path Cache” on page 255.

About the Path Cache

The first time an IDL session attempts to call a function or procedure written in the
IDL language, it must locate and compile the file containing the code for that routine.
The file containing the routine must have the same name as the routine, with either a
.pro or a .sav extension. After trying to open the file in the user’s current working
directory, IDL will attempt to open the file in each of the directories listed in the
!PATH system variable, in the order specified by !PATH. The search stops when a file
with the desired name is found or no directories remain in !PATH.
What’s New in IDL 6.0 PATH_CACHE

252 Chapter 3: New IDL Routines
By default, IDL maintains an in-memory cache of the locations of .pro and .sav
files stored in directories included in the !PATH system variable. The path cache is
built automatically during normal operation, as IDL searches the directories specified
by !PATH. Once a directory is cached, IDL knows whether or not it contains a given
file, without the need to actually attempt to open that file. This information allows
IDL to bypass directories that do not contain the desired file, providing a significant
boost in the speed of path searching. The path cache can significantly improve the
startup speed of large, object-oriented applications, because method resolution
requires extensive path searching.

The path cache operates on a per-directory basis; if IDL searches a directory for a
.pro or .sav file, the locations of all .pro and .sav files in that directory are added
to the cache, and the directory is not searched again until the cache is cleared and
rebuilt.

Note
The current contents of the path cache can be viewed using the PATH_CACHE
keyword to the HELP procedure.

Syntax

PATH_CACHE[, /CLEAR] [, /ENABLE] [, /REBUILD]

Arguments

None.

Keywords

CLEAR

Set this keyword to clear the entire contents of the path cache, leaving it completely
empty. If path caching is enabled, IDL will begin rebuilding the cache the next time it
needs to locate a .pro or .sav file. If you wish to prevent the rebuilding of the
cache, set the ENABLE keyword equal to zero as well.

Note
The .RESET_SESSION executive command clears the entire path cache as part of
resetting the IDL session.
PATH_CACHE What’s New in IDL 6.0

Chapter 3: New IDL Routines 253
ENABLE

Set this keyword to a non-zero value to specify that IDL should use the path cache
when searching for files and also add new directories to the cache as they are opened.
Set this keyword to zero to disable use of the cache when searching for files, and to
discontinue adding new directories.

Note
Disabling the cache does not cause the current contents of the cache to be
discarded. To discard the cache information, specify the CLEAR keyword.

REBUILD

Set this keyword to discard the current contents of the path cache (as if the CLEAR
keyword had been specified), and then immediately rebuild the cache by searching
the directories specified by the current value of the !PATH system variable for .pro
and .sav files.

Note
If !PATH contains many directories, or if access to those directories is slow,
rebuilding the cache using this method may also be slow. In many cases, the
CLEAR keyword is sufficient, since IDL will rebuild the empty cache as program
execution requires it to search for .pro and .sav files.

Situations in which IDL will not use the Path Cache

By default, IDL uses the path cache whenever it tries to locate .pro or .sav files.
However, IDL will never use the path cache in the following situations:

Current Working Directory

The path cache is neither checked nor added to if the file being searched for exists in
the current working directory. Before IDL searches !PATH for a file to compile, it
always looks in the current working directory without checking the cache.

Relative Paths

The path cache does not cache directories specified relative to the current directory,
even though relative paths are allowed in the specification of !PATH.

An absolute (or fully qualified) path is a path that completely specifies the location of
a file. Under UNIX, an absolute path is specified relative to the root of the filesystem,
and therefore starts with a slash (/) character. Under Microsoft Windows, an absolute
What’s New in IDL 6.0 PATH_CACHE

254 Chapter 3: New IDL Routines
path starts with a drive letter (C:, for example) or a double backslash (\\) (if the file
is specified using the Universal Naming Convention format). In contrast, a relative
path is incomplete, and must be interpreted relative to the current working directory
of the IDL process. IDL only caches absolute paths.

Executive Commands

The path cache is neither checked nor added to when a .COMPILE or .RUN executive
command is issued. In such cases, IDL performs a standard directory-by-directory
search of the directories included in !PATH.

IDL_NOCACHE File Present

IDL will not cache the contents of any directory that contains a file named
IDL_NOCACHE. See “Marking Specific Directories as Uncacheable” on page 255 for
additional information on this feature.

Path Cache Disabled

IDL will neither check nor add files to the path cache if it has been disabled. See
“Disabling the Path Cache”, below, for additional information.

Disabling the Path Cache

By default, IDL caches the locations of .pro and .sav files in all directories
specified by the !PATH system variable. Use of the path cache can be fully disabled
in the following ways:

1. By issuing the PATH_CACHE command with the ENABLE keyword set equal
to zero. This will disable the path cache until you manually re-enable it, or for
the duration of the current IDL session. See the description of the ENABLE
keyword, above, for details.

2. By unchecking the “Enable Path Caching” checkbox on the Path tab of the
IDLDE Preferences dialog. See “Path Preferences” in Chapter 5 of the Using
IDL manual for details.

3. By defining an environment variable named IDL_PATH_CACHE_DISABLE
before starting IDL. See “Environment Variables Used by IDL” in Chapter 1 of
the Using IDL manual for details.

In addition, you can selectively disable use of the path cache for specific directories
by creating a file named IDL_NOCACHE in the directory. See “Marking Specific
Directories as Uncacheable”, below, for details.
PATH_CACHE What’s New in IDL 6.0

Chapter 3: New IDL Routines 255
Marking Specific Directories as Uncacheable

You can mark specific directories as being uncacheable even though the directory is
included in !PATH. To do so, create a file named IDL_NOCACHE in that directory.

Note
IDL does not inspect the contents of an IDL_NOCACHE file; it can contain anything
you wish, or nothing at all. Under Unix operating systems, the IDL_NOCACHE file
must be named exactly as shown, using all uppercase characters in the name. Under
Microsoft Windows, the characters can have any case, but RSI suggests you use
upper case for consistency.

When IDL encounters a directory containing an IDL_NOCACHE file during normal
path searching, it makes a special entry in the path cache telling it that the directory
must not be cached. Once this is done, all future attempts to locate files in that
directory will be done without using cached information.

Note
If the directory to which you add an IDL_NOCACHE file has already been added to
the path cache for the current IDL session, you must clear the existing cache (using
the CLEAR keyword to the PATH_CACHE procedure) before the no-cache setting
will take effect.

To re-enable path caching for a directory that has been marked as uncacheable,
remove the IDL_NOCACHE file, and then reset IDL’s path cache in one of the
following ways:

• Specify the CLEAR keyword to the PATH_CACHE procedure.

• Issue the .RESET_SESSION executive command.

• Exit and restart the IDL session.

Options for Avoiding Use of the Path Cache

In most cases, the files contained in directories included in !PATH do not change
during an IDL session. In such cases the path cache is completely transparent to the
IDL user, and serves only to speed compilation of IDL routines. As a result, there is
rarely a reason to globally disable the path cache.

If files are created or deleted in a directory included in !PATH during an IDL session,
the path cache can become confused and provide bad information to IDL about the
contents of that directory. There are several ways to handle this situation. The
What’s New in IDL 6.0 PATH_CACHE

256 Chapter 3: New IDL Routines
following list of alternatives is given in rough order of preference, with the easiest
and lowest-impact options given first:

1. Leave the path cache enabled, and change your current working directory to
the directory in which files are created or deleted. Since IDL checks the current
working directory before checking the directories in !PATH, use of the path
cache does not affect IDL’s ability to find these files.

2. If the addition or deletion of files in a directory included in !PATH is a rare
occurrence, leave the path cache enabled and clear it in one of the following
ways after the contents of the directory have changed:

• Specify the CLEAR keyword to the PATH_CACHE procedure.

• Issue the .RESET_SESSION executive command.

• Exit and restart the IDL session.

3. Leave the path cache enabled and use the .COMPILE or .RUN executive
commands to force the compilation of any file, regardless of the contents of the
path cache.

4. If you have a directory (other than your current working directory) in which
files are regularly added or deleted during the execution of IDL sessions, you
can leave path caching enabled but explicitly disable caching of that specific
directory by creating an IDL_NOCACHE file, as described in “Marking Specific
Directories as Uncacheable” on page 255. This approach works for all IDL
sessions that access the directory, and is therefore convenient in long-term or
multi-user situations.

5. You can completely disable operation of the path cache using one of the
methods described under “Disabling the Path Cache” on page 254. This is not
recommended, because most directories are not dynamic, and completely
disabling path caching sacrifices the performance advantages of caching
directories whose contents are static.

Note on Behavior at Startup

Depending on the value of your !PATH system variable, you may notice that some
directories are being cached immediately when IDL starts up. This will occur if your
path definition string includes the <IDL_DEFAULT> token, or if one or more entries
include the “+” symbol. In these cases, in order for IDL to build the !PATH system
variable, it must inspect subdirectories of the specified directories for the presence of
.pro and .sav files, with the side effect of adding these directories to the path
cache. See EXPAND_PATH for a discussion of IDL’s path expansion behavior.
PATH_CACHE What’s New in IDL 6.0

Chapter 3: New IDL Routines 257
Examples

The following statement disables path caching for the current session:

PATH_CACHE, ENABLE = 0

The following statement disables path caching for the current session and throws
away the current contents of the cache:

PATH_CACHE, ENABLE = 0, /CLEAR

Suppose you want to remove a directory included in !PATH from the cache without
resetting your IDL session. The following statements cause the specified directory
not to be included in future caching by creating a file named IDL_NOCACHE in that
directory:

OPENW, UNIT = u, '/home/idluser/idl_dev_dir/IDL_NOCACHE', /GET_LUN
FREE_LUN, u

The OPENW and FREE_LUN statements create an empty file with the desired name
in the target directory. Executing the following statement clears the cache so as to
reflect the change in the current IDL session:

PATH_CACHE, /CLEAR

The next time IDL encounters this directory in a path search, it will see the presence
of the IDL_NOCACHE and make a note in the path cache that the directory is not
cacheable.

Note
You can also create the IDL_NOCACHE file outside IDL using any convenient
command (text editor, Unix touch command, etc.). If the file is created outside
IDL, only the PATH_CACHE, /CLEAR statement is necessary.

Version History

Introduced: 6.0

See Also

.FULL_RESET_SESSION, .RESET_SESSION, “!PATH” in Appendix D,
“Environment Variables Used by IDL” in Chapter 1 of the Using IDL manual, “Path
Preferences” in Chapter 5 of the Using IDL manual
What’s New in IDL 6.0 PATH_CACHE

258 Chapter 3: New IDL Routines
WIDGET_PROPERTYSHEET

The WIDGET_PROPERTYSHEET function creates a property sheet widget, which
exposes the properties of an IDL object subclassed from the IDLitComponent class
in a graphical interface. The property sheet widget must be a child of a base or tab
widget, and it cannot be the parent of any other widget.

The property sheet widget exposes the properties of an IDL object that subclasses
from the IDLitComponent class, which was designed for use by the IDL iTools
system. As a result, all IDLit* objects subclass from IDLitComponent, so properties
of object classes written for the IDL iTools system can be displayed in a property
sheet. In addition, all IDLgr* objects subclass from IDLitComponent, which means
that properties of standard IDL graphics objects can be displayed in a property sheet
even if the rest of the iTools framework is not in use.

In order to be shown in a property sheet, object properties must be registered and
visible. In addition, in order for property values shown in a property sheet to be
editable by the user, the property must be sensitive. For information on registering
properties, see “Registering Properties” in Chapter 4 of the iTool Developer’s Guide
manual. For information on making properties visible and sensitive, see “Property
Attributes” in Chapter 4 of the iTool Developer’s Guide manual.

Syntax

Result = WIDGET_PROPERTYSHEET(Parent [, /ALIGN_BOTTOM
|, /ALIGN_CENTER |, /ALIGN_LEFT |, /ALIGN_RIGHT |, /ALIGN_TOP]
[, /CONTEXT_EVENTS] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[, FONT=string] [, FUNC_GET_VALUE=string] [, KILL_NOTIFY=string]
[, /NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, SCR_XSIZE=width] [, SCR_YSIZE=height] [, /SENSITIVE]
[, /TRACKING_EVENTS] [, UNAME=string] [,UNITS={0 | 1 | 2}]
[, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]
[, YOFFSET=value] [, YSIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created property
sheet widget.
WIDGET_PROPERTYSHEET What’s New in IDL 6.0

Chapter 3: New IDL Routines 259
Arguments

Parent

The widget ID of the parent for the new property sheet widget. Parent must be a base
or tab widget.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAYCONTEXTMENU procedure within your widget
program’s event handler to display the context menu.
What’s New in IDL 6.0 WIDGET_PROPERTYSHEET

260 Chapter 3: New IDL Routines
For more on detecting and handling context menu events, see “Context-Sensitive
Menus” in Chapter 26 of the Building IDL Applications manual.

Note
With regard to /CONTEXT_EVENTS, the Motif and Windows version of the
property sheet differ very slightly. In the Motif version, individually desensitized
cells cannot generate context events, though their row label can.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” in Appendix I of the IDL Reference Guide
manual for details on specifying names for device fonts. If this keyword is omitted,
the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.
WIDGET_PROPERTYSHEET What’s New in IDL 6.0

Chapter 3: New IDL Routines 261
KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ('').

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

Note
A procedure specified via the CLEANUP keyword to XMANAGER will override a
procedure specified for your application’s top-level base with WIDGET_BASE,
KILL_NOTIFY.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. During a set operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. During a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.
What’s New in IDL 6.0 WIDGET_PROPERTYSHEET

262 Chapter 3: New IDL Routines
PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently

SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS” in the IDL Reference Guide manual
in the documentation for WIDGET_BASE.
WIDGET_PROPERTYSHEET What’s New in IDL 6.0

Chapter 3: New IDL Routines 263
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget. Each widget can contain a user-specified
value of any data type and organization. This value is not used by the widget in any
way, but exists entirely for the convenience of the IDL programmer. This keyword
allows you to set this value when the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

The user value for a widget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

VALUE

Set this keyword to the object reference or array of object references to objects that
subclass from the IDLitComponent class. Registered properties of the specified
objects will be displayed in the property sheet.

If a single object reference is supplied, the property sheet will have a single column
containing the object’s properties. If an array of object references is supplied, the
property sheet will have multiple columns.

Note
Due to limitations of the user interface controls that underlie the property sheet
widget, a property sheet can display properties for at most 100 component objects.
What’s New in IDL 6.0 WIDGET_PROPERTYSHEET

264 Chapter 3: New IDL Routines
Note
All object references must be to objects of the same type.

If no object references are supplied, the property sheet will initially be empty. Object
references can be loaded into an existing property sheet using the SET_VALUE
keyword to WIDGET_CONTROL.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a bulletin board base widget. Note that it is best to avoid using this
style of widget layout.

XSIZE

The desired width, in average character widths, for the widget's font, not including a
possible vertical scrollbar and any frame thickness. If neither XSIZE nor
SCR_XSIZE is specified, then the property sheet widget will use a default width.
This default width is computed by adding the room needed for the property names to
the width of a color cell.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a bulletin board base widget. Note that it is best to avoid using this
style of widget layout.

YSIZE

The desired height of the widget, in number of visible properties. The ultimate height
of the property sheet in pixels will include the heights of the column header, the
possible horizontal scrollbar, and any frame. If neither YSIZE nor SCR_YSIZE is
specified, the property sheet will use a default height. This default is based on the
number of rows: 10, or the number of visible properties, whichever is less.
WIDGET_PROPERTYSHEET What’s New in IDL 6.0

Chapter 3: New IDL Routines 265
Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of property
sheet widgets. In addition to those keywords that affect all widgets, the following
keyword is particularly useful: REFRESH _PROPERTY.

Keywords to WIDGET_INFO

Some keywords to WIDGET_INFO return information that applies specifically to
property sheet widgets. In addition to those keywords that apply to all widgets, the
following keywords are particularly useful: COMPONENT, PROPERTY_VALID,
PROPERTY_VALUE.

Widget Events Returned by Property Sheet Widgets

Several variations of the property sheet widget event structure depend upon the
specific event being reported. All of these structures contain the standard three fields
(ID, TOP, and HANDLER) as well as an integer TYPE field that indicates which type
of structure has been returned or which type of event was generated. Programs should
always check the type field before referencing fields that are not present in all
property sheet event structures. The different property sheet widget event structures
are described below.

Change Event (TYPE=0)

This event is generated whenever the user enters a new value for a property. It is also
used to signal that a user-defined property needs to be changed. The following
statement defines the event structure returned by the WIDGET_EVENT function:

{WIDGET_PROPSHEET_CHANGE, ID:0L, TOP:0L, HANDLER:0L, TYPE:0L,
COMPONENT:OBJREF, IDENTIFIER:"", PROPTYPE:0L, SET_DEFINED: OL}

The COMPONENT field contains an object reference to the object associated with
the property sheet. When multiple objects are associated with the property sheet, this
field indicates which object is to change.

The IDENTIFIER field specifies the value of the property’s identifier attribute. This
identifier is unique among all of the component’s properties.
What’s New in IDL 6.0 WIDGET_PROPERTYSHEET

266 Chapter 3: New IDL Routines
The PROPTYPE field indicates the type of the property (integer, string, etc.). The
integer values for these types are:

• 0 = USERDEF

• 1 = BOOLEAN

• 2 = INTEGER

• 3 = FLOAT

• 4 = STRING

• 5 = COLOR

• 6 = LINESTYLE

• 7 = SYMBOL

• 8 = THICKNESS

• 9 = ENUMLIST

The SET_DEFINED field indicates whether or not an undefined property is having
its value set. In most circumstances, along with its new value, the property should
have its UNDEFINED attribute set to zero. If a property is never marked as
undefined, this field can be ignored.

Select Event (TYPE=1)

The select event is generated whenever the current row or column in the property
sheet changes. Navigation between cells is performed by clicking on a cell. When the
property sheet is realized, no cell is selected.

The following statement defines the event structure returned by the
WIDGET_EVENT function:

{WIDGET_PROPSHEET_SELECT, ID:0L, TOP:0L, HANDLER:0L, TYPE:0L,
COMPONENT:OBJREF, IDENTIFIER:""}

The COMPONENT field is an object reference to the object associated with the
property sheet.

The IDENTIFIER field specifies the value of the property’s identifier attribute. This
identifier is unique among all properties of the component.
WIDGET_PROPERTYSHEET What’s New in IDL 6.0

Chapter 3: New IDL Routines 267
Example

Enter the following program in the IDL Editor:

; ExSinglePropSheet
;
; Creates a base with a property sheet. Only the
; default properties are visible. The property sheet’s
; event handler sets values and reveals selection
; changes.

PRO PropertyEvent, event

IF (event.type EQ 0) THEN BEGIN ; Value changed.

; Get the value of the property identified by
; event.identifier.
value = WIDGET_INFO(event.id, COMPONENT = event.component, $

PROPERTY_VALUE = event.identifier)

; Set the component’s property value.
event.component -> SetPropertyByIdentifier, event.identifier, $

value

PRINT, 'Changed: ', event.identifier, ': ', value

ENDIF ELSE BEGIN ; Selection changed.

PRINT, 'Selected: ' + event.identifier

ENDELSE

END

PRO ExSinglePropSheet_event, event

prop = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'PropSheet')

WIDGET_CONTROL, prop, XSIZE = event.x, YSIZE = event.y

END

PRO CleanupEvent, baseID

WIDGET_CONTROL, baseID, GET_UVALUE = oComp
OBJ_DESTROY, oComp

END
What’s New in IDL 6.0 WIDGET_PROPERTYSHEET

268 Chapter 3: New IDL Routines
PRO ExSinglePropSheet

; Create and initialize the component.
oComp = OBJ_NEW('IDLitVisAxis')

; Create a base and property sheet.
base = WIDGET_BASE(/TLB_SIZE_EVENT, $

TITLE = 'Single Property Sheet Example', $
KILL_NOTIFY = 'CleanupEvent')

prop = WIDGET_PROPERTYSHEET(base, VALUE = oComp, $
EVENT_PRO = 'PropertyEvent', UNAME = 'PropSheet')

; Activate the widgets.
WIDGET_CONTROL, base, SET_UVALUE = oComp, /REALIZE

XMANAGER, 'ExSinglePropSheet', base, /NO_BLOCK

END

Save this program as ExSinglePropSheet.pro, then compile and run the
program. A property sheet entitled Single Property Sheet Example is displayed:

Figure 3-19: Single Property Sheet Example
WIDGET_PROPERTYSHEET What’s New in IDL 6.0

Chapter 3: New IDL Routines 269
For examples of the types of settings possible from the property sheet:

• Click the Hide setting box, click the drop-down button, and select Hide from
the list.

• Click the Major tick length setting box, click the drop-down button, and
move the slider to select a new value.

• Click the Text color setting box, click the drop-down button, and select a new
color from the color selector.

Version History

Introduced: 6.0
What’s New in IDL 6.0 WIDGET_PROPERTYSHEET

270 Chapter 3: New IDL Routines
WIDGET_PROPERTYSHEET What’s New in IDL 6.0

Chapter 4:

Using Java Objects in
IDL
The following topics are covered in this chapter:
Overview . 272
Initializing the IDL-Java Bridge 274
IDL-Java Bridge Data Type Mapping 277
Creating IDL-Java Objects 283
Method Calls on IDL-Java Objects 285
Managing IDL-Java Object Properties . . . 287

Destroying IDL-Java Objects 289
Showing IDL-Java Output in IDL 290
The IDLJavaBridgeSession Object 291
Java Exceptions . 293
IDL-Java Bridge Examples 296
Troubleshooting Your Bridge Session . . . 314
What’s New in IDL 6.0 271

272 Chapter 4: Using Java Objects in IDL
Overview

Java is an object-oriented programming language developed by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Java in detail. Numerous third-party
books and electronic resources are available. The Java website (http://java.sun.com)
may be useful.

IDL 6.0 introduces the IDL-Java bridge, which allows you to access Java objects
within IDL code. Java objects imported into IDL behave like normal IDL objects. See
“Creating IDL-Java Objects” on page 283 for more information. The IDL-Java bridge
allows the arrow operator (->) to be used to call the methods of these Java objects
just as with other IDL objects, see “Method Calls on IDL-Java Objects” on page 285
for more information. The public data members of a Java object are accessed through
GetProperty and SetProperty methods, see “Managing IDL-Java Object Properties”
on page 287 for more information. These objects can also be destroyed with the
OBJ_DESTROY routine, see “Destroying IDL-Java Objects” on page 289 for more
information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This
functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. This access is provided by the IDLJavaBridgeSession object, which is a
Java object that maintains exceptions (errors) during a Java session, see “The
IDLJavaBridgeSession Object” on page 291 for more information.

Note
Visual Java objects cannot be embedded into IDL widgets.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, and
Macintosh platforms supported in IDL. See “Requirements for this Release” on
page 117 for more information on these platforms supported in IDL 6.0.

Java Terminology

You should become familiar with the following terms before trying to understand
how IDL works with Java objects:

Java Virtual Machine (JVM) - A software execution engine for executing the byte
codes in Java class files on a microprocessor.
Overview What’s New in IDL 6.0

http://java.sun.com

Chapter 4: Using Java Objects in IDL 273
Java Native Interface (JNI) - Standard programming interface for accessing Java
native methods and embedding the JVM into native applications. For example, JNI
may be used to call C/C++ functionality from Java or JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An API by which one may embed the Java Virtual Machine
into your native application by linking the native application with the JVM shared
library.

Java Reflection API - Provides a small, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

• construct new class instances and new arrays

• access and modify fields of objects and classes

• invoke methods on objects and classes

• access and modify elements of arrays.

IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (JNI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ_NEW function can be used to create a Java object. A Java-specific
class token identifies the Java class used to create a Java proxy object. IDL parses this
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Java class is also
provided because Java itself is case-sensitive while IDL is not. IDL uses the case-
insensitive form to create the object definition while Java uses the case-sensitive
form.

After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL object, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.

The OBJ_DESTROY procedure in IDL is used to destroy the object. This process
releases the internal Java object and frees any resources associated with it.
What’s New in IDL 6.0 Overview

274 Chapter 4: Using Java Objects in IDL
Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attempts to create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtual
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 291 for more information on the session object.

Configuring the Bridge

The .idljavabrc file on UNIX or idljavabrc on Windows contains the IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create a valid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If the environment variable $IDLJAVAB_CONFIG is set, the file it indicates is
used.

Note
This environment variable must include both the path AND the file name of
the configuration file.

2. If the environment variable $IDLJAVAB_CONFIG is not set or the file
indicated by that variable is not found in that location, the path specified in the
$HOME environment variable is used to try to locate the configuration file.

3. If the file is not found in the path indicated by the $HOME environment
variable, the <IDL_DEFAULT>/external/objbridge/java path is used
to try to locate the configuration file.

The configuration file contains the following settings. With a text editor, open your
configuration file to verify these settings are correct for your system.

• The JVM Classpath setting specifies additional locations for user classes. It
must point to the location of any class files to be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.
Initializing the IDL-Java Bridge What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 275
This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying ’-classpath’ when running java or
javac. You can also include the $CLASSPATH environment variable in the
JVM Classpath:

JVM Classpath = $CLASSPATH:/home/johnd/myClasses.jar

which allows any class defined in the CLASSPATH environment variable to be
used in the IDL-Java bridge.

On Windows, an example of a typical JVM Classpath setting is:

JVM Classpath = E:\myClasses.jar;$CLASSPATH

On UNIX, an example of a typical JVM Classpath setting is:

JVM Classpath = /home/johnd/myClasses.jar:$CLASSPATH

• The JVM LibLocation setting tells the IDL-Java bridge which JVM shared
library within a given Java version to use. Various versions of Java ship with
different types of JVM libraries. For example, Java 1.3 on Windows ships with
a "classic" JVM, a "hotspot" JVM, and a "server" JVM. Other versions and
platforms have different JVM types.

On Windows, an example of a typical JVM LibLocation setting is:

JVM LibLocation = E:\jdk1.3.1_02\jre\bin\hotspot

On UNIX, an example of a typical JVM LibLocation setting is

JVM LibLocation = /usr/java/j2re1.4.0_02/lib/sparc/client

Note
The preferred method for setting JVM LibLocation on Windows is via the
configuration file or the IDLJAVAB_LIB_LOCATION environment variable.
The preferred method on UNIX is via the $IDLJAVAB_LIB_LOCATION
environment variable because UNIX requires this variable to be set in order
to find Java shared libraries.

• The JVM Option# (where # is any whole number) setting allows you to send
additional parameters to the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in the initialization, the options are added to the end of the options
that the bridge sets by default.

• The Log Location setting indicates the directory where IDL-Java bridge log
files will be created. The default location provided by the IDL installer is /tmp
on Unix and c:\temp on Windows.
What’s New in IDL 6.0 Initializing the IDL-Java Bridge

276 Chapter 4: Using Java Objects in IDL
• The Bridge Logging setting indicates the type of bridge debug logging to be
sent to a file called jb_log<pid>.txt (where <pid> is a process ID
number) located in the directory specified by the Log Location setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFIG,
CONFIGFINE. The default value is SEVERE, which specifies that bridge errors
are logged. The CONFIG value indicates the configuration settings are also
logged. The CONFIGFINE value is the same as CONFIG, but provides more
detail.

No log file is created if this setting is not specified.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. The file is used when the first instance of the IDLjavaObject class is created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made to
the file.
Initializing the IDL-Java Bridge What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 277
IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts
variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Java.lang.String String Java has the notion
of a NULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both are identically
converted.

Arrays of the above types IDL array of the same
dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 4-1: Java to IDL Data Type Conversion
What’s New in IDL 6.0 IDL-Java Bridge Data Type Mapping

278 Chapter 4: Using Java Objects in IDL
Java.lang.Object (or array of
java.lang.Object) and any
subclass of java.lang.Object

IDL array of primitives
or IDL array of
IDLjavaObjects

In Java, everything is
a subclass of Object.
If the Java object is
an array of
primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in this table)
is created. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objects to an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL creates an object
reference of the
IDLjavaObject class.

Null object IDL Null object

Java Type (# bytes) IDL Type Notes

Table 4-1: Java to IDL Data Type Conversion (Continued)
IDL-Java Bridge Data Type Mapping What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 279
The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes

Byte byte (1) IDL bytes range from 0 to 255,
Java bytes are -128 to 127. IDL
bytes converted to Java bytes
will retain their binary
representation but values greater
than 127 will change. For
example, BYTE(255) becomes a
Java byte of -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from 0 to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
a Java short of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 4-2: IDL to Java Data Type Conversion
What’s New in IDL 6.0 IDL-Java Bridge Data Type Mapping

280 Chapter 4: Using Java Objects in IDL
Unsigned long int (4) IDL unsigned longs range from
0 to 4294967295, Java ints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Java ints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
a Java int of -1. If ULONG is
converted to wider Java value,
the sign and value is preserved.

Long64 long (8)

Unsigned Long64 long (8) IDL unsigned long64 range from
0 to 18446744073709551615,
Java ints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Java longs will retain their
binary representation values
greater than
9223372036854775807 will
change. For example,
ULONG64(1844674407370955
1615) becomes a Java long of -1.

Float float (4)

Double double (8)

String Java.lang.String

Arrays of the above
types

Java array of the same
dimensions and
corresponding type

IDL Type Java Type (# bytes) Notes

Table 4-2: IDL to Java Data Type Conversion (Continued)
IDL-Java Bridge Data Type Mapping What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 281
When calling a Java method or constructor from IDL, the data parameters are
promoted as little as possible based on the signature of the given method. The
following table shows how data types are promoted within Java relative to IDL.

Note
When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may be time intensive. Care
should be taken to minimize array copying.

IDLjavaObject Object of corresponding
Java class

Arrays of objects Java array of the same
dimensions, consisting of
corresponding Java proxy
objects

Only objects of type
IDLjavaObject are converted.

Null object Java null

IDL Type Java Type (to order of
desired promotion)

Notes

Byte byte, char, short, int, long,
float, double, boolean

Integer short, int, long, float, double,
boolean

Unsigned integer short, int, long, float, double,
boolean

Long int, long, float, double, boolean

Unsigned Long int, long, float, double, boolean

Long64 long, float, double, boolean

Unsigned Long64 long, float, double, boolean

Table 4-3: Java Data Type Promotion Relative to IDL

IDL Type Java Type (# bytes) Notes

Table 4-2: IDL to Java Data Type Conversion (Continued)
What’s New in IDL 6.0 IDL-Java Bridge Data Type Mapping

282 Chapter 4: Using Java Objects in IDL
Float float, double

Double double

String Java.lang.String

IDLjavaObject Java.lang.Object

IDL Type Java Type (to order of
desired promotion) Notes

Table 4-3: Java Data Type Promotion Relative to IDL (Continued)
IDL-Java Bridge Data Type Mapping What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 283
Creating IDL-Java Objects

As with all IDL objects, a Java object is created using the IDL OBJ_NEW function.
Keying off the provided Java class name, the underlying implementation uses the
IDL Java subsystem to call the constructor on the desired Java object. The following
line of code demonstrates the basic syntax for calling OBJ_NEW to create a Java
object within IDL:

oJava = OBJ_NEW(IDLjavaObject$JAVACLASSNAME, JavaClassName, $
[Arg1, Arg2, ..., ArgN])

where JAVACLASSNAME is the class name token used by IDL to create the object,
JavaClassName is the class name used by Java to initialize the object, and Arg1
through ArgN are any data parameters required by the constructor. See “Java Class
Names in IDL” for more information.

See the hellojava.pro file in the external/objbridge/java/examples
directory of the IDL distribution for a simple example of an IDL-Java object creation.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge also provides the ability to access static Java methods and data
members. See “Java Static Access” on page 284 for more information.

Java Class Names in IDL

The underlying Java interpreter recognizes the Java class name including all objects
contained within the Java interpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referred to as java.lang.String.

In the IDL class name, the Java class separator (’.’) should be replaced with an
underscore (’_’). If a Java class of type String were created, the following IDL
OBJ_NEW call would be used:

oJString = OBJ_NEW('IDLJavaObject$JAVA_LANG_STRING',$
'java.lang.String', 'My String')
What’s New in IDL 6.0 Creating IDL-Java Objects

284 Chapter 4: Using Java Objects in IDL
The class name is provided twice because IDL is case-insensitive whereas Java is
case-sensitive, see “IDL-Java Bridge Architecture” on page 273 for more
information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object
lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUP,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a special wrapper object type for calling static methods. This IDL
object wrapper references the underlying Java class, allowing the object to call static
methods on the class or allowing the object to use the Get/Set Property calls to access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ_NEW to create a static proxy within IDL:

oJava = OBJ_NEW(IDLjavaObject$Static$JAVACLASSNAME, JavaClassName)

where JAVACLASNAME is the class name token used by IDL to create the object and
JavaClassName is the class name used by Java to initialize the object. See “Java
Class Names in IDL” on page 283 for more information.

A special static object would not need to be created to call an instantiated
IDLJavaObject with static methods:

oNotStatic = OBJ_NEW('IDLjavaObject$JAVACLASSNAME', $
'JavaClassName')

oNotStatic -> aStaticMethod ; this is OK

See the javaprops.pro file in the external/objbridge/java/examples
directory of the IDL distribution for an example of working with static data members.

Note
All restrictions on creating Java objects apply to this static object.
Creating IDL-Java Objects What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 285
Method Calls on IDL-Java Objects

When a method is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Java data types. Any results are returned in
IDL variables of the appropriate type.

As with all IDL objects, the general syntax in IDL for an underlying Java method that
returns a value (known as a function method in IDL) is:

result = ObjRef -> Method([Arguments])

and the general syntax in IDL for an underlying Java method that does not return a
value, a void method, (known as a procedure method in IDL) is:

ObjRef -> Method[, Arguments]

where ObjRef is an object reference to an instance of a dynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call is Made?

When a method is called on an instance of IDLjavaObject, IDL uses the method
name and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the translation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java’s ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an algorithm to match the IDL method name and parameters to the
corresponding Java object method.
What’s New in IDL 6.0 Method Calls on IDL-Java Objects

286 Chapter 4: Using Java Objects in IDL
Before the algorithm starts, IDL provides a case-insensitive <METHODNAME> and
a reference to the Java object. For a given object and its parent classes, the Java
bridge obtains a list of all the public method names, including static methods. This
algorithm performs the following steps:

1. If the Java class has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Java class has several method names that differ only in case and one is all
uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge issues
an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion algorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Java is preferred and only
widening promotion is allowed. If no match is found, an error is issued.

Data Type Conversions

IDL and Java use different data types. IDL’s dynamic type conversion facilities
handle all conversion of data types between IDL and the Java system. The data type
mappings are described in “IDL-Java Bridge Data Type Mapping” on page 277.

For example, if the Java object has a method that requires a value of type int as an
input argument, IDL would supply the value as an IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal data type
conversion mechanism before passing the value to the Java object as an int.
Method Calls on IDL-Java Objects What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 287
Managing IDL-Java Object Properties

Property names and arguments are also passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection API to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) are identified through arguments to the GetProperty and SetProperty
methods. See “Getting and Setting Properties” on page 288 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the algorithm starts, IDL provides a case-insensitive <PROPERTYNAME>
and a reference to the Java object. For the given object and its parent classes, the Java
bridge obtains a list of all the public data members including static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTYNAME> (except for case insensitivity), this Java data member is
used. At this point, data types are not yet taken into account; this algorithm
only matches the data member names.

2. If the Java class has several member names that differ only in case, the data
member name that exactly matches the IDL < PROPERTYNAME > (i.e. the
one that is all caps) is called. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTYNAME >.

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error is issued.

When retrieving a property with the GetProperty method, this step is skipped
and the value is returned to IDL.

See the allprops.pro and publicmembers.pro files in the
external/objbridge/java/examples directory of the IDL distribution for IDL
routines that provide information about data members associated with given Java
classes.
What’s New in IDL 6.0 Managing IDL-Java Object Properties

288 Chapter 4: Using Java Objects in IDL
Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:

ObjRef -> GetProperty, PROPERTY=variable

where ObjRef is an instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variable is
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:

ObjRef -> SetProperty, Property=value

where ObjRef is an instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property values in a single statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routines is assumed to be a fully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDLJavaObject, or an array of an IDL primitive type. See “IDL-Java Bridge Data
Type Mapping” on page 277 for more information.

Note
Besides other Java based objects, no complex types (Structures, pointers, etc.) are
supported as parameters to property calls.
Managing IDL-Java Object Properties What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 289
Destroying IDL-Java Objects

The OBJ_DESTROY routine is used to destroy instances of IDLjavaObject. When
OBJ_DESTROY is called with a Java based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine’s garbage
collector runs.
What’s New in IDL 6.0 Destroying IDL-Java Objects

290 Chapter 4: Using Java Objects in IDL
Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the System.out and System.err
output streams).

For example, given the following Java code:

public class helloWorld
{
// ctor
public helloWorld() {
System.out.println("helloWorld ctor");
}

public void sayHello() {
System.out.println("Hello! (from the helloWorld object)");
}

}

The following output occurs in IDL:

IDL> oJHello = OBJ_NEW('IDLjavaObject$HelloWorld', 'helloWorld')
% helloWorld ctor
IDL> oJHello -> SayHello
% Hello! (from the helloWorld object)
IDL> OBJ_DESTROY, oJHello

This example code is also provided in the helloJava.java and hellojava2.pro
files, which are in the external/objbridge/java/examples directory of the
IDL distribution.

Note
Due to restrictions in IDL concerning receiving standard output from non-main
threads, the bridge will only send System.out and System.err information to
IDL from the main thread. Other thread’s output will be ignored.

Note
A print() in Java will not have a carriage return at the end of the line (as opposed
to println(), which does). However, when outputting to Java both print() and
println() will print to IDL followed by a carriage return. You can change this
result by having the Java-side application buffer its data up into the lines you wish
to see on the IDL-side.
Showing IDL-Java Output in IDL What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 291
The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an IDL-Java bridge session object,
IDLJavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is a proxy to an internal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an IDLJavaObject to this
object using OBJ_NEW:

oJSession = OBJ_NEW('IDLjavaObject$IDLJAVABRIDGESESSION’)

Note
Only one Java session object needs to be created during an IDL session. Subsequent
calls to this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

oJException = oJSession -> GetException()

where oJSession is a reference to the session object and oJException is a proxy
object to a java.lang.Throwable object, which is the class used in Java to
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDLJavaBridgeSession object also has the GetVersionObject method, which
retrieves the IDLJavaVersion object:

oJVersion = oJSession -> GetVersionObject()

where oJSession is a reference to the session object and oJVersion is a proxy
object to an IDLJavaVersion object. This object determines version information
about the IDL-Java bridge and the underlying Java system.
What’s New in IDL 6.0 The IDLJavaBridgeSession Object

292 Chapter 4: Using Java Objects in IDL
The IDLJavaVersion object provides the following function methods, which do not
require any arguments:

• GetBuildDate() - a java.lang.String object specifying the build date. For
example, Apr 1 2003.

• GetJavaVersion() - a java.lang.String object specifying the Java version. For
example, 1.3.1_02.

• GetBridgeVersion() - a java.lang.String object specifying the IDL-Java bridge
version.

An example of the version object is provided in the bridge_version.pro file,
which is in IDL’s external/objbridge/java/examples directory.
The IDLJavaBridgeSession Object What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 293
Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an IDLjavaObject, calling methods, setting properties, or getting
properties. Typically, these errors will be fixed by changing your IDL or Java code (or
by changing the bridge configuration). Java bridge errors operate like other IDL
errors in that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create a java.lang.StringBuffer of negative length, a
java.lang.NegativeArraySizeException is issued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing a line number. In addition, a
mechanism is provided to grab the exception object (a subclass of
java.lang.Throwable) via the session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handle it, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetExpection method to the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on page 291
for more information about this object.

Uncaught Exceptions

If a Java exception is not caught, IDL will stop execution and display an Exception
thrown error message. For example, when the following program is saved as
ExceptIssued.pro, compiled, and ran in IDL:

PRO ExceptIssued

; This will throw a Java exception
oJStrBuffer = OBJ_NEW($

'IDLJavaObject$java_lang_StringBuffer', $
’java.lang.StringBuffer’, -2)

END
What’s New in IDL 6.0 Java Exceptions

294 Chapter 4: Using Java Objects in IDL
IDL issues the following output:

IDL> ExceptIssued
% Exception thrown
% Execution halted at: EXCEPTISSUED 4 ExceptIssues.pro
% $MAIN$

From the IDL command line, you can then use the session object to help debug the
problem:

IDL> oJSession = OBJ_NEW('IDLJavaObject$IDLJAVABRIDGESESSION')
IDL> oJExc = oJSession -> GetException()
IDL> oJExc -> PrintStackTrace
% java.lang.NegativeArraySizeException:
% at java.lang.StringBuffer.<init>(StringBuffer.java:116)

A similar example is also provided in the exception.pro file, which is in the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept.pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept.pro file is
also provided in the external/objbridge/java/examples directory of the IDL
distribution.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classes that you are using to ensure IDL is catching any expected exceptions. For
example:

PRO ExceptCaught

; Grab the special IDLJavaBridgeSession object
oJBridgeSession = OBJ_NEW('IDLJavaObject$IDLJAVABRIDGESESSION')

bufferSize = -2
; Our Java constructor might throw an exception, so let’s catch it
CATCH, error_status
IF (error_status NE 0) THEN BEGIN

; Use session object to get our Exception
oJExc = oJBridgeSession -> GetException()
; should be of type
; IDLJAVAOBJECT$JAVA_LANG_NEGATIVEARRAYSIZEEXCEPTION
HELP, oJExc
; Now we can access the members java.lang.Throwable
PRINT, 'Exception thrown:', oJExc -> ToString()
oJExc -> PrintStackTrace
; Cleanup
OBJ_DESTROY, oJExc
Java Exceptions What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 295
; Increase the buffer size to avoid the exception.
bufferSize = bufferSize + 100

ENDIF

; This throws a Java exception the 1st time, but pass the 2nd time.
oJStrBuffer = OBJ_NEW('IDLJavaObject$java_lang_StringBuffer', $

'java.lang.StringBuffer', bufferSize)

OBJ_DESTROY, oJStrBuffer
OBJ_DESTROY, oJBridgeSession

END

A similar example is also provided in the exception.pro file, which is in the
external/objbridge/java/examples directory of the IDL distribution. The
exception.pro example shows how to use the utility routine provided in the
showexcept.pro file. This showexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept.pro file is
also provided in the external/objbridge/java/examples directory of the IDL
distribution.
What’s New in IDL 6.0 Java Exceptions

296 Chapter 4: Using Java Objects in IDL
IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

• “Accessing Arrays Example”

• “Accessing URLs Example” on page 299

• “Accessing Grayscale Images Example” on page 301

• “Accessing RGB Images Example” on page 304

Note
If IDL is not able to find any Java class associated with these examples, make sure
your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 274 for more information.

Accessing Arrays Example

This example creates a two-dimensional array within a Java class, which is contained
in a file named array2d.java. IDL then accesses this data through the ArrayDemo
routine, which is in a file named arraydemo.pro. These files are also in the IDL
distribution within the external/objbridge/java/examples directory.

The array2d.java file contains the following text for creating a two-dimensional
array in Java:

public class array2d
{
short[][] m_as;
long[][] m_aj;

// ctor
public array2d() {

int SIZE1 = 3;
int SIZE2 = 4;

// default ctor creates a fixed number of elements
m_as = new short[SIZE1][SIZE2];
m_aj = new long[SIZE1][SIZE2];

for (int i=0; i<SIZE1; i++) {
for (int j=0; j<SIZE2; j++) {

m_as[i][j] = (short)(i*10+j);
m_aj[i][j] = (long)(i*10+j);
IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 297
}
}

}

public void setShorts(short[][] _as) {
m_as = _as;

}
public short[][] getShorts() {return m_as;}
public short getShortByIndex(int i, int j) {return m_as[i][j];}

public void setLongs(long[][] _aj) {
m_aj = _aj;

}
public long[][] getLongs() {return m_aj;}
public long getLongByIndex(int i, int j) {return m_aj[i][j];}

}

The arraydemo.pro file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDemo

; The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. We can interrogate and
; change this array.
oJArr = OBJ_NEW('IDLJavaObject$ARRAY2D', 'array2d')

; First, let’s see what is in the short array at index
; (2,3).
PRINT, 'array2d short(2, 3) = ', $

oJArr -> GetShortByIndex(2, 3), $
' (should be 23)’

; Now, let’s copy the entire array from Java to IDL.
shortArrIDL = oJArr -> GetShorts()
HELP, shortArrIDL
PRINT, 'shortArrIDL[2, 3] = ', shortArrIDL[2, 3], $

' (should be 23)'

; Let’s change this value...
shortArrIDL[2, 3] = 999
; ...and copy it back to Java...
oJArr -> SetShorts, shortArrIDL
; ...now its value should be different.
What’s New in IDL 6.0 IDL-Java Bridge Examples

298 Chapter 4: Using Java Objects in IDL
PRINT, 'array2d short(2, 3) = ', $
oJArr -> GetShortByIndex(2, 3), ' (should be 999)'

; Let’s set our array to something different.
oJArr -> SetShorts, INDGEN(10, 8)
PRINT, 'array2d short(0, 0) = ', $

oJArr -> GetShortByIndex(0, 0), ' (should be 0)'
PRINT, 'array2d short(1, 0) = ', $

oJArr -> GetShortByIndex(1, 0), ' (should be 1)'
PRINT, 'array2d short(2, 0) = ', $

oJArr -> GetShortByIndex(2, 0), ' (should be 2)'
PRINT, 'array2d short(0, 1) = ', $

oJArr -> GetShortByIndex(0, 1), ' (should be 10)'

; Array2d has a setLongs method, but b/c arrays do not
; (currently) promote, the first call to setLongs works
; but the second fails.
oJArr -> SetLongs, L64INDGEN(10, 8)
PRINT, 'array2d long(0, 1) = ', $

oJArr -> GetLongByIndex(0, 1), ' (should be 10)'

;PRINT, '(expecting an error on the next line...)'
;oJArr -> SetLongs, INDGEN(10,8)

; Cleanup our object.
OBJ_DESTROY, oJArr

END

After saving and compiling the above files (array2d.java in Java and
ArrayDemo.pro in IDL), update the jbexamples.jar file in the
external/objbridge/java directory with the new compiled class and run the
ArrayDemo routine in IDL. The routine should produce the following results:

array2d short(2, 3) = 23 (should be 23)
SHORTARRIDL INT = Array[3, 4]
shortArrIDL[2, 3] = 23 (should be 23)
array2d short(2, 3) = 999 (should be 999)
array2d short(0, 0) = 0 (should be 0)
array2d short(1, 0) = 1 (should be 1)
array2d short(2, 0) = 2 (should be 2)
array2d short(0, 1) = 10 (should be 10)
array2d long(0, 1) = 10 (should be 10)
IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 299
Accessing URLs Example

This example finds and reads a given URL, which is contained in a file named
URLReader.java. IDL then accesses this data through the URLRead routine, which
is in a file named urlread.pro. These files are also in the IDL distribution within
the external/objbridge/java/examples directory.

The URLReader.java file contains the following text for reading a given URL in
Java:

import java.io.*;
import java.net.*;

public class URLReader
{
 private ByteArrayOutputStream m_buffer;

 // **
 //
 // Constructor. Create the reader
 //
 // **
 public URLReader() {
 m_buffer = new ByteArrayOutputStream();
 }

 // **
 //
 // readURL: read the data from the URL into our buffer
 //
 // returns: number of bytes read (0 if invalid URL)
 //
 // NOTE: reading a new URL clears out the previous data
 //
 // **
 public int readURL(String sURL) {
 URL url;
 InputStream in = null;

 m_buffer.reset(); // reset our holding buffer to 0 bytes

 int total_bytes = 0;
 byte[] tempBuffer = new byte[4096];
 try {
 url = new URL(sURL);
 in = url.openStream();
What’s New in IDL 6.0 IDL-Java Bridge Examples

300 Chapter 4: Using Java Objects in IDL
 int bytes_read;
 while ((bytes_read = in.read(tempBuffer)) != -1) {
 m_buffer.write(tempBuffer, 0, bytes_read);
 total_bytes += bytes_read;
 }
 } catch (Exception e) {
 System.err.println("Error reading URL: "+sURL);
 total_bytes = 0;
 } finally {
 try {
 in.close();
 m_buffer.close();
 } catch (Exception e) {}
 }

 return total_bytes;
 }

 // **
 //
 // getData: return the array of bytes
 //
 // **
 public byte[] getData() {
 return m_buffer.toByteArray();
 }

 // **
 //
 // main: reads URL and reports # of byts reads
 //
 // Usage: java URLReader <URL>
 //
 // **

 public static void main(String[] args) {
 if (args.length != 1)
 System.err.println("Usage: URLReader <URL>");
 else {
 URLReader o = new URLReader();
 int b = o.readURL(args[0]);
 System.out.println("bytes="+b);
 }
 }

}

IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 301
The urlread.pro file contains the following text for inputting an URL as an IDL
string and then accessing its data within IDL:

FUNCTION URLRead, sURLName

; Create an URLReader.
oJURLReader = OBJ_NEW('IDLjavaObject$URLReader', 'URLReader')

; Read the URL data into our Java-side buffer.
nBytes = oJURLReader -> ReadURL(sURLName)

;PRINT, 'Read ', nBytes, ' bytes'

; Pull the data into IDL.
byteArr = oJURLReader -> GetData()

; Cleanup Java object.
OBJ_DESTROY, oJURLReader

; Return the data.
RETURN, byteArr

END

After saving and compiling the above files (URLReader.java in Java and
urlread.pro in IDL), you can run the URLRead routine in IDL. This routine is a
function with one input argument, which should be a IDL string containing an URL.
For example:

address = 'http://www.RSInc.com'
data = URLRead(address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, which is
contained in a file named GreyBandsImage.java. IDL then accesses this data
through the ShowGreyImage routine, which is in the showgreyimage.pro file.
These files are also in the IDL distribution within the
external/objbridge/java/examples directory.
What’s New in IDL 6.0 IDL-Java Bridge Examples

302 Chapter 4: Using Java Objects in IDL
The GreyBandsImage.java file contains the following text for creating a grayscale
image in Java:

import java.awt.*;
import java.awt.image.*;

public class GreyBandsImage extends BufferedImage
{
 // Members
 private int m_height;
 private int m_width;

 //
 // ctor
 //
 public GreyBandsImage() {
 super(100, 100, BufferedImage.TYPE_INT_ARGB);
 generateImage();
 m_height = 100;
 m_width = 100;
 }

 //
 // private method to generate the image
 //
 private void generateImage() {
 Color c;
 int width = getWidth();
 int height = getHeight();
 WritableRaster raster = getRaster();
 ColorModel model = getColorModel();

 int BAND_PIXEL_WIDTH = 5;
 int nBands = width/BAND_PIXEL_WIDTH;
 int greyDelta = 255 / nBands;
 for (int i=0 ; i < nBands; i++) {
 c = new Color(i*greyDelta, i*greyDelta, i*greyDelta);
 int argb = c.getRGB();
 Object colorData = model.getDataElements(argb, null);

 for (int j=0; j < height; j++)
 for (int k=0; k < BAND_PIXEL_WIDTH; k++)
 raster.setDataElements(j, (i*5)+k, colorData);

 }
 }
IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 303
 //
 // mutators
 //
 public int[] getRawData() {
 Raster oRaster = getRaster();
 Rectangle oBounds = oRaster.getBounds();
 int[] data = new int[m_height * m_width * 4];

 data = oRaster.getPixels(0,0,100,100, data);
 return data;
 }
 public int getH() {return m_height; }
 public int getW() {return m_width; }

}

The showgreyimage.pro file contains the following text for accessing the
grayscale image within IDL:

PRO ShowGreyImage

; Construct the GreyBandImage in Java. This is a sub-class of
; BufferedImage. It is actually a 4 band image that happens to
display bands in greyscale. It is 100x100 pixels.
oGrey = OBJ_NEW('IDLjavaObject$GreyBandsImage', 'GreyBandsImage')

; Get the 4 byte pixel values.
data = oGrey -> GetRawData()

; Get the height and width.
h = oGrey -> GetH()
w = oGrey -> GetW()

; Display the graphic in an IDL window
WINDOW, 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; Cleanup
OBJ_DESTROY, oGrey

END
What’s New in IDL 6.0 IDL-Java Bridge Examples

304 Chapter 4: Using Java Objects in IDL
After saving and compiling the above files (GreyBandsImage.java in Java and
showgreyimage.pro in IDL), you can run the ShowGreyImage routine in IDL. The
routine should produce the following image:

Accessing RGB Images Example

This example imports an RGB (red, green, and blue) image from the IDL distribution
into a Java class. The image is in the glowing_gas.jpg file, which is in the
examples/data directory of the IDL distribution. The Java class also displays the
image in a Java Swing user-interface. Then, the image is accessed into IDL and
displayed with the new iImage tool. The Java and IDL code for this example is
provided in the external/objbridge/java/examples directory, but the Java
code has not been built as part of the jbexamples.jar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note
Due to a Java bug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

Figure 4-1: Java Grayscale Image Example
IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 305
The first and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the glowing_gas.jpg file. Copy and paste the
following text into a file, then save it as FrameTest.java:

import java.awt.*;
import java.awt.image.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.File;

public class FrameTest extends JFrame {

RSIImageArea c_imgArea;
int m_xsize;
int m_ysize;
Box c_controlBox;

public FrameTest() {

super("This is a JAVA Swing Program called from IDL");
// Dispose the frame when the sys close is hit
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
m_xsize = 350;
m_ysize = 371;
buildGUI();

}

public void buildGUI() {

c_controlBox = Box.createVerticalBox();

JLabel l1 = new JLabel("Example Java/IDL Interaction");
JButton bLoadFile = new JButton("Load new file");
bLoadFile.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JFileChooser chooser = new JFileChooser(new
File("c:\\RSI\\IDL60\\EXAMPLES\\DATA"));
chooser.setDialogTitle("Enter a JPEG file");
if (chooser.showOpenDialog(FrameTest.this) ==
JFileChooser.APPROVE_OPTION) {

java.io.File fname = chooser.getSelectedFile();
String filename = fname.getPath();
System.out.println(filename);
c_imgArea.setImageFile(filename);

}
}

What’s New in IDL 6.0 IDL-Java Bridge Examples

306 Chapter 4: Using Java Objects in IDL
});

JButton b1 = new JButton("Close this example");
b1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
dispose();
}
});

c_imgArea = new
RSIImageArea("c:\\rsi\\idl60\\examples\\data\\glowing_gas.jpg",
new Dimension(m_xsize,m_ysize));

Box mainBox = Box.createVerticalBox();
Box rowBox = Box.createHorizontalBox();
rowBox.add(b1);
rowBox.add(bLoadFile);

c_controlBox.add(l1);
c_controlBox.add(rowBox);
mainBox.add(c_controlBox);
mainBox.add(c_imgArea);

getContentPane().add(mainBox);

pack();
setVisible(true);
c_imgArea.displayImage();
c_imgArea.addResizeListener(new RSIImageAreaResizeListener() {
public void areaResized(int newx, int newy) {
Dimension cdim = c_controlBox.getSize(null);
Insets i = getInsets();
newx = i.left + i.right + newx;
newy = i.top + cdim.height + newy + i.bottom;
setSize(new Dimension(newx, newy));
}
});
}

public void setImageData(int [] imgData, int xsize, int ysize) {
MemoryImageSource ims = new MemoryImageSource(xsize, ysize,
imgData, 0, ysize);
Image imgtmp = createImage(ims);
Graphics g = c_imgArea.getGraphics();
g.drawImage(imgtmp, 0, 0, null);

}

IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 307
public void setImageData(byte [][][] imgData, int xsize,
int ysize) {

System.out.println("SIZE = "+xsize+"x"+ysize);
int newArray [] = new int[xsize*ysize];
int pixi = 0;
int curpix = 0;
short [] currgb = new short[3];
for (int i=0;i<m_xsize;i++) {
for (int j=0;j<m_ysize;j++) {
for (int k=0;k<3;k++) {
currgb[k] = (short) imgData[k][i][j];
currgb[k] = (currgb[k] < 128) ? (short) currgb[k] : (short)
(currgb[k]-256);

}
curpix = (int) currgb[0] * +
((int) currgb[1] * (int) Math.pow(2,8)) +
((int) currgb[2] * (int) Math.pow(2,16));

if (pixi % 1000 == 0)
System.out.println("PIXI = "+pixi+" "+curpix);
newArray[pixi++] = curpix;
}
}

MemoryImageSource ims = new MemoryImageSource(xsize, ysize,
newArray, 0, ysize);
c_imgArea.setImageObj(c_imgArea.createImage(ims));

}

public byte[][][] getImageData()
{
int width = 1;
int height = 1;
PixelGrabber pGrab;

width = m_xsize;
height = m_ysize;

// pixarray for the grab - 3D bytearray for display
int [] pixarray = new int[width*height];
byte [][][] bytearray = new byte[3][width][height];

// create a pixel grabber
pGrab = new PixelGrabber(c_imgArea.getImageObj(),0,0,
What’s New in IDL 6.0 IDL-Java Bridge Examples

308 Chapter 4: Using Java Objects in IDL
width,height, pixarray, 0, width);

// grab the pixels from the image
try {
boolean b = pGrab.grabPixels();
} catch (InterruptedException e) {
System.err.println("pixel grab interrupted");
return bytearray;
}

// break down the 32-bit integers from the grab into 8-bit bytes
// and fill the return 3D array
int pixi = 0;
int curpix = 0;
for (int j=0;j<m_ysize;j++) {
for (int i=0;i<m_xsize;i++) {
curpix = pixarray[pixi++];
bytearray[0][i][j] = (byte) ((curpix >> 16) & 0xff);
bytearray[1][i][j] = (byte) ((curpix >> 8) & 0xff);
bytearray[2][i][j] = (byte) ((curpix) & 0xff);
}
}
return bytearray;
}

public static void main(String [] args) {
FrameTest f = new FrameTest();
}

}

Note
The above text is for the FrameTest class that accesses the glowing_gas.jpg file
in the examples/data directory of a default installation of IDL on a Windows
system. The file’s location is specified as c:\\RSI\\IDL60\\EXAMPLES\\DATA
in the above text. If the glowing_gas.jpg file is not in the same location on
system, edit the text to change the location of this file to match your system.
IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 309
The FrameTest class uses two other user-defined classes, RSIImageArea and
RSIImageAreaResizeListener. These classes help to define the viewing area and
display the image in Java. Copy and paste the following text into a file, then save it as
RSIImageArea.java:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Vector;
import java.io.File;

public class RSIImageArea extends JComponent implements
MouseMotionListener, MouseListener {

Image c_img;
int m_boxw = 100;
int m_boxh = 100;
Dimension c_dim;
boolean m_pressed = false;
int m_button = 0;
Vector c_resizelisteners = null;

public RSIImageArea(String imgFile, Dimension dim) {

c_img = getToolkit().getImage(imgFile);
c_dim = dim;
setPreferredSize(dim);
setSize(dim);
addMouseMotionListener(this);
addMouseListener(this);

}

public void addResizeListener(RSIImageAreaResizeListener l) {
if (c_resizelisteners == null) c_resizelisteners = new Vector();
if (! c_resizelisteners.contains(l)) c_resizelisteners.add(l);
}
public void removeResizeListener(RSIImageAreaResizeListener l) {
if (c_resizelisteners == null) return;
if (c_resizelisteners.contains(l)) c_resizelisteners.remove(l);
}

public void displayImage() {
repaint();
}

public void paint(Graphics g) {
What’s New in IDL 6.0 IDL-Java Bridge Examples

310 Chapter 4: Using Java Objects in IDL
int xsize = c_img.getWidth(null);
int ysize = c_img.getHeight(null);
if (xsize != -1 && ysize != -1) {
if (xsize != c_dim.width || ysize != c_dim.height) {
c_dim.width = xsize;
c_dim.height = ysize;
setPreferredSize(c_dim);
setSize(c_dim);
if (c_resizelisteners != null) {
RSIImageAreaResizeListener l = null;
for (int j=0;j<c_resizelisteners.size();j++) {
l = (RSIImageAreaResizeListener)
c_resizelisteners.elementAt(j);
l.areaResized(xsize, ysize);
}
}
}
}
g.drawImage(c_img, 0, 0, null);
}

public void setImageFile(String fileName) {
c_img = null;
c_img = getToolkit().getImage(fileName);
repaint();
}

public Image getImageObj() {
return c_img;
}

public void setImageObj(Image img) {
c_img = img;
repaint();
}

public void drawZoomBox(MouseEvent e) {
int bx = e.getX() - m_boxw/2;
bx = (bx >=0) ? bx :0;
int by = e.getY() - m_boxh/2;
by = (by >=0) ? by :0;
int ex = bx + m_boxw;
if (ex > c_dim.width) {
ex = c_dim.width;
bx = c_dim.width-m_boxw;
}
int ey = by + m_boxh;
if (ey > c_dim.height) {
IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 311
ey = c_dim.height;
by = c_dim.height-m_boxh;
}

repaint();
Graphics g = getGraphics();
g.drawImage(c_img, bx, by, ex, ey, bx+(m_boxw/4), by+(m_boxh/4),
ex-(m_boxw/4),ey-(m_boxh/4), null);
g.setColor(Color.white);
g.drawRect(bx, by, m_boxw, m_boxh);

}

public void mouseDragged(MouseEvent e) {
drawZoomBox(e);
}

public void mouseMoved(MouseEvent e) {

Graphics g = getGraphics();
if (m_pressed && (m_button == 1)) {
drawZoomBox(e);
g.setColor(Color.white);
g.drawString("DRAG", 10,10);
} else {

g.setColor(Color.white);
String s = "("+e.getX()+","+e.getY()+")";
repaint();
g.drawString(s, e.getX(), e.getY());
}

}

public void mouseClicked(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

public void mousePressed(MouseEvent e) {
m_pressed = true;
m_button = e.getButton();
repaint();
if (m_button == 1) drawZoomBox(e);
}

public void mouseReleased(MouseEvent e) {
m_pressed = false;
m_button = 0;
}
What’s New in IDL 6.0 IDL-Java Bridge Examples

312 Chapter 4: Using Java Objects in IDL
}

And copy and paste the following text into a file, then save it as
RSIImageAreaResizeListener.java:

public interface RSIImageAreaResizeListener {
public void areaResized(int newx, int newy);
}

Compile these classes in Java. Then, either update the jbexamples.jar file in the
external/objbridge/java directory with the new compiled class, place the
resulting compiled classes in your Java class path, or edit the JVM Classpath setting
in the IDL-Java bridge configuration file to specify the location (path) of these
compiled classes. See “Configuring the Bridge” on page 274 for more information.

With the Java classes compiled, you can now access them in IDL. Copy and paste the
following text into the IDL Editor window, then save it as ImageFromJava.pro:

PRO ImageFromJava
; Create a Swing Java object and have it load image data
; into IDL.

; Create the Java object first.
oJSwing = OBJ_NEW('IDLjavaObject$FrameTest', 'FrameTest')

; Get the image from the Java object.
image = oJSwing -> GetImageData()
PRINT, 'Loaded Image Information:'
HELP, image

; Delete the Java object.
OBJ_DESTROY, oJSwing

; Interactively display the image.
IIMAGE, image

END
IDL-Java Bridge Examples What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 313
After compiling the above routine, you can run it in IDL. This routine produces the
following Java Swing application.

Then, the routine produces the following iImage tool.

Note
After IDL starts the Java Swing application, the two displays are independent of
each other. If a new image is loaded into the Java application, the IDL iImage tool is
not updated. If the iImage tool modifies the existing image or opens a new image,
the Java Swing application is not updated.

Figure 4-2: Java Swing Application Example

Figure 4-3: iImage Tool from Java Swing Example
What’s New in IDL 6.0 IDL-Java Bridge Examples

314 Chapter 4: Using Java Objects in IDL
Troubleshooting Your Bridge Session

The IDL-Java bridge provides error messages for specific types of operations. These
messages can be used to determine when these errors occur, how these errors happen,
and what solutions can be applied. The following sections pertain to these error
messages and their possible solutions for each type of operation:

• “Errors when Initializing the Bridge”

• “Errors when Creating Objects” on page 315

• “Errors when Calling Methods” on page 316

• “Errors when Accessing Data Members” on page 317

Errors when Initializing the Bridge

The IDL-Java bridge initializes when the first Java object in IDL is created. If the
bridge is not configured correctly, an error message is issued and the IDL stops. The
following errors occur because the IDL-Java bridge cannot find the Java Virtual
Machine on your system. On UNIX, check the $IDLJAVAB_LIB_LOCATION
environment variable, and on Windows, check the IDLJAVAB_LIB_LOCATION
environment variable. If this environment variable does not exist on your system,
create it and set it equal to the location of the Java Virtual Machine on your system.
See “Configuring the Bridge” on page 274 for details:

• Bad JVM Home value: 'path', where path is the location of Java Virtual
Machine on your system.

• JVM shared lib not found in path 'JVM LibLocation', where JVM
shared lib is the location of the Java Virtual Machine shared library and JVM
LibLocation is the value of the IDLJAVAB_LIB_LOCATION environment
variable.

• No valid JVM shared library exists at location pointed to
by $IDLJAVAB_LIB_LOCATION

• idljavab.jar not found in path 'path', where path is the location of
the external/objbridge/java directory in the IDL distribution.

• Bridge cannot determine which JVM to run
Troubleshooting Your Bridge Session What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 315
• Java virtual machine failed to start

• Failure loading JVM: path/JVM shared lib name, where path is the
location of the Java Virtual Machine and JVM shared lib name is the name of
the main Java shared library, which is usually libjvm.so on UNIX and
jvm.dll on Windows.

If IDL catches an error and continues, subsequent attempts to call the bridge will
generate the following message:

• IDL-Java bridge is not running

If this message occurs, fix the error and restart IDL.

Errors when Creating Objects

The following error messages can occur while creating a Java object in IDL. Possible
solutions for these errors are also provided:

• Wrong number of parameters - occurs if OBJ_NEW does not have 2 or
more parameters. Make sure you are specifying the class name twice; once in
uppercase with periods replaced by underscores for IDL, and another with
periods for Java. See “Java Class Names in IDL” on page 283 for details.

• Second parameter must be the Java class name - occurs if 2nd
parameter is not an IDL string. When using OBJ_NEW, make sure the Java
class name parameter is an IDL string. In other words, the class name has a
single quote mark before and after it. See “Java Class Names in IDL” on
page 283 for details.

• Class classname not found, where classname is the class name you
specified in the first two parameters to OBJ_NEW - occurs if the IDL-Java
bridge cannot find the class name specified. Check the spelling of each class
name parameter and make sure the class name specified for IDL is referring to
the same type of object specified for the Java class name. If the parameters are
correct, check the Classpath setting in the IDL-Java bridge configuration file.
Make sure the Classpath is set to the correct path for the class files containing
the classname class. See “Configuring the Bridge” on page 274 for details.
What’s New in IDL 6.0 Troubleshooting Your Bridge Session

316 Chapter 4: Using Java Objects in IDL
• Class classname is not a public class, where classname is the class
name you specified in the first two parameters to OBJ_NEW - occurs if
specified class is not a public class. Edit your Java code to make sure the class
you want to access is public.

• Constructor class::class(signature) not found, where class is the class
name - occurs if the IDL-Java bridge cannot find the class constructor with the
given parameters. Check the spelling of the specified parameters and look in
your Java code to see if you are specifying the correct arguments for the class
you are trying to create. Also check to ensure your IDL data can be promoted
to the data types in the Java signature. See “Java Class Names in IDL” on
page 283 for details.

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure is not allowed as a parameter to an IDLjavaObject.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 291 for details.

Errors when Calling Methods

The following error messages can occur while calling methods to Java objects in
IDL. Possible solutions for these errors are also provided:

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure are not allowed as a parameter to an IDLjavaObject.

• Class class has no method named method, where class is the class name
and method is the method name specified when trying to call the Java method -
occurs if the method of given name does not exist. Check the spelling of the
method name. Also compare the method name in the Java class source file with
the method name provided when calling the method in IDL. See “What
Happens When a Method Call is Made?” on page 285 for details.

• class::method(signature) is a void method. Must be called as a
procedure, where class is the class name and method is the method name
specified when a void Java method is called as an IDL function. Change the
syntax of the method call. See “Method Calls on IDL-Java Objects” on
page 285 for details.
Troubleshooting Your Bridge Session What’s New in IDL 6.0

Chapter 4: Using Java Objects in IDL 317
• Method class::method(signature) not found, where class is the class
name and method is the method name specified when trying to call the Java
method - occurs if the IDL-Java bridge cannot find the method with a matching
signature. Check the spelling of the method name. Also compare the method
name in the Java class source file with the method name provided when calling
the method in IDL. Also check to ensure your IDL data can be promoted to the
Java signature. See “What Happens When a Method Call is Made?” on
page 285 for details.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 291 for details.

Errors when Accessing Data Members

The following error messages can occur while accessing data members to Java
objects in IDL. Possible solutions for these errors are also provided:

• Illegal IDL value in parameter n, where n is the position of the
parameter - occurs if an illegal parameter type is provided. For example, an
IDL structure is not allowed as a parameter to an IDLjavaObject.

• Class class has no data member named property, where class is the
class name and property is the data member name specified when trying to
access the Java data member - occurs if the data member of the given name
does not exist. Check the spelling of the property name. Also compare the data
member name in the Java class source file with the property name provided
when accessing it in IDL. See “Managing IDL-Java Object Properties” on
page 287 for details.

• Property class::property of type type not found, where class is the
class name, property is the data member name specified, and type is property’s
data type when trying to access the Java data member - occurs if the IDL-Java
bridge cannot find the Java data member of the given type. Check the data type
of Java data member and make sure you are trying to use a similar type in IDL.
See “Getting and Setting Properties” on page 288 for details.

• Exception thrown - occurs if an exception occurs in Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDLJavaBridgeSession object. See “The IDLJavaBridgeSession Object” on
page 291 for details.
What’s New in IDL 6.0 Troubleshooting Your Bridge Session

318 Chapter 4: Using Java Objects in IDL
Troubleshooting Your Bridge Session What’s New in IDL 6.0

Index

Symbols
##= operator, 27
#= operator, 27
&& operator, 29
*= operator, 27
++ operator, 26
+= operator, 27
/= operator, 27
<= operator, 27
-= operator, 27
-- operator, 26

>= operator, 27
|| operator, 29
~ operator, 29

A
AND= operator, 27
ARRAY_INDICES function, 124
arrays

comparing, 35
converting subscripts, 36, 124

assigning compound operators, 27

B
background color, for fonts, 18
blending fonts, 18
Boolean operations, 30
button

events
press, 39
release, 39
What’s New in IDL 6.0 319

320
button (continued)
widgets

controlling events, 39
press and release events, 39
querying, 39

C
caching, 251, 251
centering pixels in ROIs, 24
classes

Java
data members, 287
methods, 285
names, 283
path, 274
properties, 287
static, 284

clearer font characters, 18
comparing

object reference arrays, 35
pointer arrays, 35
strings, 36

compiling
logical predicate option, 32
object classes, 35

compound assignment, 27
compression

number of text lines, 37
text file access, 37

configurating the IDL-Java bridge, 274
connnecting to Java objects, 272
contour plots

interactive (iTool) routine, 12, 133
menu access, 38

controlling button widget events, 39
controlling the depth buffer, 22
creating

iTools, 11, 158
Java object in IDL, 283
shared memory private file mapping, 35

current (active) iTool, 213
curve fitting

results, 24
status determination, 24

D
data types

IDL and Java, 279
IDL-Java bridge conversion, 281
Java and IDL, 277

decrementing variables, 26
deleting, iTools, 215
depth buffering objects

controls, 22
test functions, 22

E
EQ= operator, 27
errors

handling
IDL-Java bridge, 293
most recent, 35

Java exceptions, 293
evaluating predicate expressions, 32
examples

font background colors, 18
font blending, 18
font kerning, 18
Free Type library fonts, 18

extending iTools, 11

F
FILE_BASENAME function, 127
FILE_DIRNAME function, 130
files

compressed text, 37
configuring IDL-Java bridge, 274
Index What’s New in IDL 6.0

321
files (continued)
deriving

base name, 37, 127
directory name, 37, 130

extensions, 39
finding, 251, 251
private mapping with shared memory, 35

fonts
background colors, 18
blending, 18
clearer characters, 18
example of Free Type library fonts, 18
Free Type library, 18
kerning, 18

Free Type library for fonts, 18

G
GE= operator, 27
GT= operator, 27

H
handling

Java exceptions, 293
most recent errors, 35

I
ICONTOUR procedure, 133
IDL_VALIDNAME function, 156
IDLITSYS_CREATETOOL function, 158
IDL-Java bridge. See Java
IIMAGE procedure, 161
images

color channel, 164
interactive (iTool) routine, 12, 161
menu access, 38

incrementing variables, 26
interactive tools. See iTools

IPLOT procedure, 176
ISURFACE procedure, 194
ITCURRENT procedure, 213
ITDELETE procedure, 215
ITGETCURRENT function, 217
iTools

creating, 11, 158
current (active), 213
deleting, 215
displaying properties, 40, 258
extending, 11
introduction
objects, 12
registering, 219
resetting, 222
retrieving current, 217
routines

contours, 12, 133
creating tools, 158
current (active) tool, 213
deleting tools, 215
image, 12, 161
plot, 12, 176
property sheet, 258
registering tools, 219
resetting tools, 222
retrieving current tool, 217
surface, 12, 194
volume, 12, 224

start menu, 38
ITREGISTER procedure, 219
ITRESET procedure, 222
IVOLUME procedure, 224

J
Java

bridge
class name in IDL, 283
configuration, 274
destroying objects, 289
What’s New in IDL 6.0 Index

322
Java (continued)
bridge

IDL data types, 277
Java data types, 279
session object, 291
version, 291

classes
data members, 287
methods, 285
names, 283
path, 274
properties, 287
static, 284

converting data types with IDL, 281
creating IDL-Java bridge objects, 283
Native Interface (JNI), 273
objects, 272
static

classes, 284
data members, 284
methods, 284

Virtual Machine (JVM), 272

K
kerning fonts, 18

L
LE= operator, 27
libraries

Free Type font, 18
netCDF, 37

LOGICAL_AND function, 245
LOGICAL_OR function, 247
LOGICAL_TRUE function, 249
LT= operator, 27

M
menus

new visualizations, 38
starting iTools, 38

messaging, 35
MOD= operator, 27
monitering path cache, 35

N
NE= operator, 27
netCDF

library version, 37
support, 37

O
objects

array comparison, 35
depth buffering, 22
IDL-Java bridge session

exceptions, 293
parameters, 291

Java classes
IDL-Java bridge, 272
path, 274

resolving classes, 35
obsolete routines, 116
offsetting pixels in ROIs, 24
operators

--, 26
++, 26
compound assignment, 27
logical

AND, 30
basic, 29
Boolean, 30
OR, 31
TRUE, 31

short-circuiting, 30
Index What’s New in IDL 6.0

323
P
path

cache preference, 38
caching, 251, 251
maintaining in memory, 251
monitoring cache, 35

PATH_CACHE procedure, 251
platforms

Java for ION, 120
supported

IDL, 117
ION, 119

plots
interactive (iTool) routine, 12, 176
menu access, 38

pointers, array comparison, 35
predicate expression evaluation, 32
preferences, path caching, 38
pressing button widgets, 39
private file mapping, 35
properties

displaying, 40, 258
widget, 40, 258

Q
querying button widgets, 39

R
registering iTools, 219
requirements

IDL, 117
ION, 119

resetting iTools, 222
resolving object classes, 35
ROI

centering pixels, 24
offsetting pixels, 24

routines
converting array subscripts, 124
files

base name, 127
directory name, 130

iTools (interactive)
contours, 12, 133
creating tools, 158
current (active) tool, 213
deleting tools, 215
image, 12, 161
plot, 12, 176
property sheet, 258
registering tools, 219
resetting tools, 222
retrieving current tool, 217
surface, 12, 194
volume, 12, 224

logical
AND, 245
OR, 247
TRUE, 249

obsolete, 116
path caching, 251
validating variable names, 156

runtime
freely distributed, 14
Virtual Machine limitations, 14

S
session object

IDL-Java bridge exceptions, 293
IDL-Java bridge parameters, 291

shared memory, 35
status of curve fitting, 24
strings, comparing, 36
subscripts, converting to multi-dimensional,

36, 124
supported platforms

IDL, 117
What’s New in IDL 6.0 Index

324
supported platforms (continued)
ION, 119

surface plots
interactive (iTool) routine, 12, 194
menu access, 38

V
validating variable names, 36, 156
variables

decrementing, 26
incrementing, 26
valid name, 36, 156

Virtual Machine
freely distributed runtime, 14
Java (JVM), 272
limitations, 14

volumes
interactive (iTool) routine, 12, 224
menu access, 38

W
web

browsers, 120
servers, 119

WIDGET_PROPERTYSHEET function, 258
widgets

aligning (ALIGN_XXX keywords), 259
button

controlling events, 39
press and release events, 39
querying, 39

property sheets, 40, 258
Index What’s New in IDL 6.0

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	What’s New in IDL 6.0
	Contents
	Overview of New Features in IDL 6.0
	New iTools for Interactive Analysis
	Introducing the iTools
	New iTool Routines
	New iTool Object Classes
	ITools User’s and Developer’s Guides

	New IDL Virtual Machine
	Getting the IDL Virtual Machine
	Using the IDL Virtual Machine
	New VM Keyword to the LMGR Routine

	New IDL-Java Bridge
	New Path Caching
	Visualization Enhancements
	Object Graphics Font Rendering Improvements
	New Depth Buffer Controls for Graphic Objects

	Analysis Enhancements
	New FITA and STATUS Keywords to CURVEFIT
	New MEASURE_ERRORS Keyword to GAUSSFIT
	New PIXEL_CENTER Keyword for ROI Masks
	Enhancements to the INTERVAL_VOLUME, ISOSURFACE, and MESH_DECIMATE Routines

	Language Enhancements
	Increment and Decrement Operators
	Compound Assignment Operators
	New Logical Operators
	New Logical Operation Functions
	LOGICAL_PREDICATE Compilation Option
	Multiple Subscripts Now Allowed On Assignment ASSOC Variables
	IEEE Floating Point NaN Comparisons Give Correct Results Under Microsoft Windows
	Enhancement to the ARRAY_EQUAL Routine
	Enhancement to the HELP Routine
	Enhancement to the MESSAGE Routine
	Enhancement to the RESOLVE_ALL Routine
	Enhancement to the SHMMAP Routine
	Enhancement to the STRSPLIT Routine
	New ARRAY_INDICES Function
	New IDL_VALIDNAME Function

	File Access Enhancements
	NetCDF Library Update
	Enhancement to the FILE_LINES Routine
	New FILE_BASENAME and FILE_DIRNAME Functions

	IDLDE Enhancements
	Path Cache Preference
	New Visualization Menu for iTools

	User Interface Toolkit Enhancements
	Enhancements to the DIALOG_PICKFILE Routine
	Button Widget Enhancements
	New WIDGET_PROPERTYSHEET Function
	Enhancements to the WIDGET_CONTROL and WIDGET_INFO Routines
	Enhancement to WIDGET_DROPLIST

	Documentation Enhancements
	New iTools User’s Guide
	New iTools Developer’s Guide

	New and Enhanced IDL Objects
	New IDL Object Classes
	New IDL Object Properties
	IDL Object Property Enhancements
	IDL Object Method Enhancements

	New and Enhanced IDL Routines
	New IDL Routines
	IDL Routine Enhancements

	Routines Obsoleted in IDL 6.0
	Requirements for this Release
	IDL 6.0 Requirements
	ION 2.0 Requirements

	New IDL Object Classes
	List of New Object Classes

	New IDL Routines
	ARRAY_INDICES
	FILE_BASENAME
	FILE_DIRNAME
	ICONTOUR
	IDL_VALIDNAME
	IDLITSYS_CREATETOOL
	IIMAGE
	IPLOT
	ISURFACE
	ITCURRENT
	ITDELETE
	ITGETCURRENT
	ITREGISTER
	ITRESET
	IVOLUME
	LOGICAL_AND
	LOGICAL_OR
	LOGICAL_TRUE
	PATH_CACHE
	WIDGET_PROPERTYSHEET

	Using Java Objects in IDL
	Overview
	Java Terminology
	IDL-Java Bridge Architecture

	Initializing the IDL-Java Bridge
	Configuring the Bridge

	IDL-Java Bridge Data Type Mapping
	Creating IDL-Java Objects
	Java Class Names in IDL
	Java Static Access

	Method Calls on IDL-Java Objects
	What Happens When a Method Call is Made?
	Data Type Conversions

	Managing IDL-Java Object Properties
	Getting and Setting Properties

	Destroying IDL-Java Objects
	Showing IDL-Java Output in IDL
	The IDLJavaBridgeSession Object
	Java Exceptions
	IDL-Java Bridge Examples
	Accessing Arrays Example
	Accessing URLs Example
	Accessing Grayscale Images Example
	Accessing RGB Images Example

	Troubleshooting Your Bridge Session
	Errors when Initializing the Bridge
	Errors when Creating Objects
	Errors when Calling Methods
	Errors when Accessing Data Members

