What's New In
IDL 6.0

IDL Version 6.0

July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved.

Research Systems Inc.

0703IDLG0OWN

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fithess for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, |ON Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, PO. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

Overview of New Features in IDL 6.0c.ccceiiiiiiiiiiiii e, 9
New ITooISfor INtEraCtive ANAIYSISccvccieeieciece et ree e st e e sreesreesre e 10
INtroduCiNg thE ITOOISviieeceee e 10
T A oo I 01U] =S 12
NEeW i TOOI OBJECE CIASSESccuviuieeeiesie ettt st n e ne e 12
ITools User'sand DevelOper's GUIAESccccvieeieriieesee e sieeseestee e ste e ste e 13
New IDL Virtual MaChinNecccoiiiieece et 14
Getting the IDL Virtual MaChineccceveeieeieeseeseerie et eee e s sreesnee s 14
Using the IDL Virtual MaChingccoocveveiiii it 14
New VM Keyword to the LMGR ROULINEccocveeieciieeie e s sne 15
NEW IDL-JAVABIIAGE ..cveivieeieeiie sttt st s saesnears 16
NEW Path CaChiNgccoiiiiiieieeee et 17

What's New in IDL 6.0 3

Visualization ENNANCEMENESocviiieeiiecie ettt ettt ettt e re e re b snne 18
Object Graphics Font Rendering Improvementscccocvevereieeeneneneesesiese e 18
New Depth Buffer Controls for Graphic ODJECESccccveeeeveiiiiceecese e 22

ANalySIS ENNANCEMENESo.eiieieieiese ettt 24
New FITA and STATUS Keywordsto CURVEFIT ... iivieieiecceecece e, 24
New MEASURE_ERRORS Keyword to GAUSSFITcccoovieveeeneneveeese e 24
New PIXEL_CENTER Keyword for ROl Maskscccceeeeveieneeieeseseseeseese e 24
Enhancements to the INTERVAL_VOLUME, ISOSURFACE, and
MESH _DECIMATE ROULINESvecteeiietiitieeeete ettt esee sttt et ee et sbe st ene bt enis 25

Language ENNaNCEMENESc.cocviiiieiece ettt sttt e sreenas 26
Increment and Decrement OPEIALONScocerereeeereereseeeeseeseesreeseeseeseessesaenseseessens 26
Compound AsSIgNMENt OPEFELOIScceecveerieeieeieeieeereeesreseesreesesseesseesreessessseeses 27
NEW LOQICal OPEIEIOIS ...ocueeeeiisiieeieiesie e seestesteste e eeestestesreeseesessessaeeesaessesneensesens 29
New Logical Operation FUNCLIONScccovcviiriieiee s e siee e ses e s e esseesee e e 30
LOGICAL_PREDICATE Compilation Optionccccvceeeeriennseeeeneseseeseeseeseeees 31
Multiple Subscripts Now Allowed On Assignment ASSOC Variables 33
|EEE Floating Point NaN Comparisons Give Correct Results Under Microsoft
WVINOOWS ...ttt ettt et re e s ae e saeesbeesbeesbeesbeesbeenbeenbeenbeeteentesnbesntens 34
Enhancement to the ARRAY _EQUAL ROULINEcceceeveeiir et 35
Enhancement to the HELP ROULINEccuveiuiiiiciececececte ettt e 35
Enhancement to the MESSAGE ROULINEcvooiieeiieeciee et 35
Enhancement to the RESOLVE_ALL ROULINEccccveeieiiieeeee e 35
Enhancement to the SHMMAP ROULINEooueiiiieiceeeceeeceeee et 35
Enhancement t0 the STRSPLIT ROULINEccvcviiiiiiecee ettt 36
New ARRAY _INDICES FUNCHION ...c.coiiiiiieiecie et ere e 36
New IDL_VALIDNAME FUNCLONocoiiieeeiece ettt 36

File ACCESS ENNANCEIMENLSooeveeeeeecee ettt ettt et e tee et e et e e vee e saeeeeareenaeeens 37
NEtCDF Library UPateccccovieeeeeieiisieeeesie sttt 37
Enhancement to the FILE_LINES ROULINEccoouviieieeiee et 37
New FILE_ BASENAME and FILE_DIRNAME FUNCLIONScccoevvivieieecieceene 37

IDLDE ENNGNCEMENESooouvieceieetee ettt ettt e etee e etteeste e et e e teeebeesbeeeebeeesaeeesnseensneens 38
Path CaChe PrefErEINCEvecceeeieeteee ettt sre s 38
New Visualization Menu for ITOOIScueoceeieeeecee ettt e 38

Contents What's New in IDL 6.0

User Interface ToolKit ENNANCEMENTSccocvrieiiienirineeeeeese e 39
Enhancements to the DIALOG_PICKFILE ROULINEcccoeoevceiie e 39
Button Widget ENNANCEMENESccvviiiiieieie ettt 39
New WIDGET_PROPERTY SHEET FUNCLIONcceieeirrsieieeeeses e 40
Enhancements to the WIDGET_CONTROL and WIDGET_INFO Routines 40
Enhancement t0 WIDGET_DROPLISTcccoviiiiineieeesesesieee e seeneenens 40

Documentation ENNANCEMENLScocereererirenieieeise s 41
NEW iTOOISUSEI'SGUIARccueeeeeeieieeeeee et 41
New iTOOIS DEVEIOPE'S GUITEccecuiieeeeeciecie ettt 41

New and Enhanced IDL OBJECESooeereiiieiiee et 42
NEW IDL ObJECE CIASSESvoiviivieeeiisiecieeieeste et ste st ete e ste st re e tesbe e seensesne e 42
New IDL ObjeCt PrOpertiESccceiireeeeeeresie e 45
IDL Object Property ENhanNCEMENLSccccceeveevieiiieee e 9
IDL Object Method ENhanCementscocceeereiireneneseee e 96

New and Enhanced IDL ROULINEScoriiirienieineresie et 97
NEW IDL ROULINES ..ottt st ee et e e sne e e eneesne e 97
IDL Routing ENNaNCEMENLScccoviirirenierieeeesie st 99

Routines Obsoleted iN IDL 6.0oceoieierieeeee e 116

Requirements for thiSREIEASEocuvceeiiiiceeee e 117
IDL 6.0 REQUITEIMENTSooiiiieeeeeiesie ettt eeseeseeeneenaeseesneas 117
[ON 2.0 REQUIFEMENLSocviieeiieiesieiteeeesie st st e et sa et st aesresreeneenaesaesneas 119

Chapter 2:

New IDL ODJECt ClaSSESuuiiiiiiiiiiiiiiiieeeee e 121

List Of NEW ODJECE CIASSESccceeiriiieirieriesieeee st 122

Chapter 3:

NEW IDL ROULINES ..uuuiiiiii e 123

ARRAY _INDICES ..ottt ettt st ne st e e snessesaeneens 124

FILE_BASENADME ...ttt e s 127

FILE_DIRNAME ..ottt ettt sttt snessenae e enessensenens 130

[CONTOUR ..ottt sttt bbb b ae st e 133

IDL_VALIDNAME ..ottt sttt nn e 156

IDLITSYS CREATETOOL ..ottt st 158

N] 161

I 2 ST S PR 176

B N 1 S 194

What's New in IDL 6.0 Contents

ITCURRENT .ottt sttt sttt sttt st a et nbe b e 213
ITDELETE ..ot eesee ettt st sttt e e s s ntene e e nnestenaenaenennennenean 215
ITGETCURRENT ..ottt sttt sttt st sttt sae e 217
ITREGISTER ..ottt sttt sttt se et e e e e nestenae e enensesnenean 219
ITRESET ...ttt e bbbttt b e b b et nae b e 222
IV OLUME ...ttt et sttt e se e e e sessenae e enennennennan 224
LOGICAL_AND ..ottt nbe e e 245
(@1 1@ A I ST 247
LOGICAL_TRUE ..ottt sttt sttt st nb e e 249
N I o T O 1 | S 251
WIDGET_PROPERTY SHEET ..ottt 258
Chapter 4:
Using Java ODJectS iN IDLuuiiiiiiiiiiiiiiiiieeee e 271
(@< V= 272
= 2= B = 10011070] oo | 272
IDL-Java Bridge ArChiteCIUIEcooeiieireriiieeees et 273
Initializing the IDL-JavaBridgeccceeieeiiere ettt 274
Configuring tNE BIIOGEc..oveueeieieeeeeeete et 274
IDL-Java Bridge Data Type MapPinNgcccccceverrerieeseeseeseesieesreesseesseeseesessseenessnsesnes 277
Creating IDL-JaVa ODJECESccecoerueiririeieieiesiese ettt er e e 283
JAVa ClasS NaAMES IN IDL ..ottt e 283
= Y B o oo TP 284
Method Calls on IDL-Java ODJECLScceeieeiie et 285
What Happens When aMethod Call iSMade?cccovireieinneneeenc e 285
(D= v W Y/ o LT @00 01V/= £ o] 1S S 286
Managing IDL-Java ObjeCt PrOPErti€Sccceerererieinesesiesieese e 287
Getting and Setting Propertiesoccvieeieriiee e see e e et 288
Destroying IDL-Java ObJECLSccccceririirieiririesieseeesie st e 289
Showing IDL-Java OUIPUL TN IDL ...oceiiieciecee e ettt e 290
The IDLJavaBridgeSession ODJECT ..o 291
JAVA EXCEPLIONS ...ttt s sre e re e re e re e nreennn 293

Contents What's New in IDL 6.0

IDL-Java Bridge EXAMPIESccocoeeviiieiieiicieite ettt 296
ACCeSSING AITayS EXAMPIE ..ot 296
ACCESSING URLS EXAMPIE .o.viveeeiee ettt s 299
Accessing Grayscale Images EXamPle ..o 301
Accessing RGB IMages EXAMPIEc.oceeieiiiiieeece e s 304

Troubleshooting Y our Bridge SESSIONccceiriereeienese e 314
Errorswhen [nitiaizing the Bridgecccoeviieeeese e 314
Errorswhen Creating ODJECESccooeieeieree e 315
Errorswhen Caling Methodsccccveieieiiiecece e 316
Errorswhen Accessing Data MemDErSooveieieie e 317

IO EX i a e e as 319

What's New in IDL 6.0 Contents

Chapter 1:

Overview of New

Features In

This chapter contains the following topics:

IDL 6.0

New iToolsfor Interactive Analysis 10
New IDL Virtual Machine 14
New IDL-JavaBridge 16
New PathCaching 17
Visualization Enhancements 18
AnalysisEnhancements 24
Language Enhancements 26
File Access Enhancements 37

What's New in IDL 6.0

IDLDE Enhancements 38
User Interface Toolkit Enhancements 39
Documentation Enhancements 41
New and Enhanced IDL Objects 42
New and Enhanced IDL Routines 97
Routines Obsoleted inIDL 6.0 116
Requirementsfor thisRelease 117

9

10 Chapter 1: Overview of New Features in IDL 6.0

New iTools for Interactive Analysis

Introducing the iTools

The new Intelligent Tools (iTools) are a set of interactive utilities that combine data
analysis and visualization with the task of producing presentation quality graphics.
Based onthe IDL Object Graphics system, theiTools are designed to help you get the
most out of your datawith minimal effort. They allow you to continue to benefit from
the control of a programming language, while enjoying the convenience of a point-
and-click environment.

InIDL 6.0, five pre-built iTools are exposed for immediate interactive use. Each of
these five toolsis designed around a specific data or visualization type, including:

¢ Two and three dimensional plots (line, scatter, polar, and histogram style)
e Surface representations

* Contour lines

* Imagedisplays
* Volume visudizations

TheiTools are built upon a new object-oriented framework, or set of object classes,
that serve as the building blocks for the interface and functionality of the Intelligent
Tools. IDL programmers can easily use this framework to create custom data analysis
and visualization environments. Such custom Intelligent Tools may be called from
within alarger IDL application, or they may serve as the foundation for a complete
application in themselves.

A Single Tool with Many Faces

What sets the Intelligent Tools apart from precursors such as the Live Tools (now
obsolete with IDL 6.0) — and what gives them their optimal power, flexihility, and
extensibility — isthe cohesive, open architecture of the Intelligent Tools system. The
iTools system is actually comprised of a single tool, which adapts to handle the data
that you passtoit. The plot, surface, image, contour, and volume tools are simply
shortcut configurations, which facilitate ad hoc data analysis and visualization. Each
tool encapsulates the functionality (data operations, display manipulations, and
visualization types) required to handle its data or visualization type. However, you
are not constrained to work with a single data or visualization type. For example,
using the Intelligent Tools system, you may start by bringing up asurface plotin a
surface tool and then import scattered point data into the same plot to see the
relationship between two datasets. Or, you may start with an image display, overlay

New iTools for Interactive Analysis What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 11

contours from another dataset, and map both the image and contours onto a three-
dimensional surface representation of athird dataset. By adding new datainto an
iTool, it is easy to end up with a hybrid tool that can handle complex, composite
visualizations.

The main enhancements the new i Tools provide are more mouse interactivity,

WY SIWY G (What-You-See-1s-What- You-Get) printing, built-in analysis, undo-redo
capabilities, layout control, and better-looking plots. These robust, pre-built tools
reduce the amount of programming IDL users must do to create interactive
visualizations. At the same time, the iTools integrate seamlessly with the IDL
Command Line, user interface controls, and custom algorithms. In this way, the
iTools maintain and enhance the control and flexibility IDL usersrely on for data
exploration, algorithm design, and rapid application development.

Foundation for the Future

Asyou will discover, theiTools are compelling new toolsto add to your arsenal.
They complement the strong foundation that IDL has maintained over the course of
its evolution. This foundation has made possible countless valuable user-written
applications across many disciplines and industries. However, the iTools also
represent the start of a new, updated display paradigm for IDL. While the iTools
systemin IDL 6.0 is apowerful and flexible environment that will allow you to
immediately accelerate your data interpretation and reporting, it is only the
beginning. We will continue to build on this new technology in future releases. You
can look forward to more functionality, flexibility, and optimization as the iTools
system continues to grow.

We look forward to members of the IDL community building on theiTools system as
well. TheiTools source codeisincluded in the IDL distribution to allow you to:

e extend the pre-built tools with your own operations, manipulations,
visualization types, and GUI contrals,

e create your own custom tools based on the iTools component framework,

e share your inventions with othersin the IDL community viathe RSl User-
Contributed Library (http://www.RSInc.com/codebank) or other avenues of
collaboration and distribution.

What's New in IDL 6.0 New iTools for Interactive Analysis

http://www.RSInc.com/codebank

12

Chapter 1: Overview of New Features in IDL 6.0

New iTool Routines

Five new iTool routines allow access to the pre-built Intelligent Tools from the IDL
Command Line or within user-written code. The routines accept data parameters and
keywordsto control the initial characteristics and allow for overplotting. Data access
and visualization properties can also be controlled interactively via the iTool user
interface.

Thefollowing iTool routines are a part of IDL 6.0:

IPLOT - for two and three-dimensional plotting of line and point data. For
more details, see “IPLOT” in the IDL Reference Guide manual.

ISURFACE - for surface representations of two-dimensional array data and
irregularly sampled point collections. For more details, see“ISURFACE” in
the IDL Reference Guide manual.

ICONTOUR - for the production and manipulation of contour maps of two-
dimensional array data and irregularly sampled point collections. For more
details, see “ICONTOUR” in the IDL Reference Guide manual.

IIMAGE - for image display, exploration, ROI definition, and basic
processing. For more details, see“1IMAGE” in the IDL Reference Guide
manual.

[VOLUME - for volume rendering, manipulation, and dissection. For more
details, see “IVOLUME" in the IDL Reference Guide manual.

New iTool Object Classes

The new iTool object classes alow programmers to leverage the underlying i Tool
component framework. Using these building blocks, you can create custom iTools
from scratch or extend existing i Tools with your own operations, manipulations,
visualization types, and GUI controls.

Thefollowing iTool objects are a part of IDL 6.0. These object are described in the
IDL Reference Guide:

New iTools for Interactive Analysis

IDLitCommand
IDLitCommandSet
IDLitComponent
IDLitContainer
IDLitData

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

IDLitDataContainer
IDLitDataOperation
IDLitIMessaging
IDLitManipulator
IDLitManipulatorContainer
IDLitManipulatorM anager
IDLitManipulatorVisual
IDLitOperation
IDLitParameter
IDLitParameterSet
IDLitReader

IDLitTool

IDLitUI
IDLitVisualization
IDLitWindow

IDLitWriter

13

ITools User’s and Developer’'s Guides

With the introduction of the Intelligent Tools, IDL 6.0 includes two new manuals:

TheiTools User’s Guide walks you through calling the iTools and using the iTools
system interactively. The iTools Developer’s Guide instructs you on how to use the
iTools component framework to develop your own iTools or build on existing ones.

What's New in IDL 6.0

New iTools for Interactive Analysis

14 Chapter 1: Overview of New Features in IDL 6.0

New IDL Virtual Machine

RSI now offers afredly distributable utility known as the IDL Virtual Machine. The
IDL Virtual Machineis designed to provide IDL users with asimple, no-cost method
for distributing IDL applications to colleagues and customers. It runson all IDL
supported platforms (see “ Requirements for this Release” on page 117) and does not
require alicenseto run.

The IDL Virtual Machine will run acompiled IDL . sav fileevenif noIDL licenseis
present. RSI's aim with the IDL Virtual Machineisto facilitate IDL code
collaboration and application distribution. However, afew restrictions exist:

e ThelDL Virtua Machine displays a splash screen on startup.
e . sav filesmust be created using IDL version 6.0 or later.
* Noaccessto the IDL command line or IDL compiler is provided.

e IDL programsthat call the EXECUTE function will not run in the IDL Virtual
Machine.

e Cdlable IDL applications and applications that use the IDL ActiveX control
will not runinthe IDL Virtual Machine.

¢ ThelDL Virtual Machine must be installed via the installation program
provided by RSI. You are prohibited from modifying the IDL Virtual Machine
distribution.

See the Building IDL Applications manual for more information on creating
applications for the IDL Virtual Machine.

Getting the IDL Virtual Machine

The IDL Virtual Machine isincluded with al IDL distributions, including the freely-
downloadable IDL installer available from RSI’'s website (http://www.RSInc.com).
During installation, you can choose to install either afull IDL distribution (which
includesthe IDL Virtual Machine) or just the IDL Virtual Machine distribution.

Using the IDL Virtual Machine
When you attempt to run a. sav file, IDL will first attempt to execute the file using a

licensed version of IDL. If no licenses are available, the . sav file will be executed in
IDL Virtual Machine mode.

New IDL Virtual Machine What's New in IDL 6.0

http://www.RSInc.com

Chapter 1: Overview of New Features in IDL 6.0 15

To explicitly use the IDL Virtual Machine when an IDL licenseis present (for
debugging purposes for example), do one of the following:

Windows Platforms
» Dragthe. sav fileto the IDL Virtual Machine desktop icon.
e At the command prompt, use the following command:
idlrt -vmefile. sav
wherefile.sav is the name of the IDL . sav file.
UNIX Platforms

e At the command prompt, use the following command:
idl -vnefile. sav

wherefile.sav isthe name of the IDL . sav file.
New VM Keyword to the LMGR Routine

The LMGR function has anew VM keyword that allows you to test whether the
current IDL sessionisrunningin IDL Virtual Machine mode. IDL Virtual Machine
applications do not provide access to the IDL Command Line.

See“LMGR” on page 106 for more details.

What's New in IDL 6.0 New IDL Virtual Machine

16 Chapter 1: Overview of New Features in IDL 6.0

New IDL-Java Bridge

IDL now supports the use of Java objects. You can access Java objects within your
IDL code using the IDL-Java bridge, a built-in feature of IDL 6.0. The IDL-Java
bridge enables you to take advantage of functionality provided by Java, including
Javal/O, networking, and third party functionality.

The new DL javaObject class instantiates a desired Java object using the object’s
class name. An instance of this object within IDL allows you access methods and
data members (properties) of the desired Java object. The IDLjavaObject classis
defined in “IDLjavaObject” in the IDL Reference Guide manual.

To the IDL user, an instance of the IDLjavaObject class behaves just like any other
IDL object. You can read about the creation and management of Java objects within
IDL in Chapter 8, “Using Java Objectsin IDL” in the External Development Guide
manual.

When an instance of the IDLjavaObject classis created, the IDL-Java bridge
connects that instance to a Java object. Thisinitial connection starts a Javasession. In
IDL, you can monitor the session through the IDL JavaBridgeSession object. This
object can be used to handle any exceptions (caused by the Java object) within IDL.
This bridge session object is also described in Chapter 8, “Using Java Objectsin
IDL” in the External Development Guide manual.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, and
Macintosh platforms supported in IDL. See * Requirements for this Release” on
page 117 for more information on these platforms supported in IDL 6.0.

New IDL-Java Bridge What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 17

New Path Caching

Thefirst time an IDL session attemptsto call afunction or procedure written in the
IDL language, it must locate the file containing the code for that routine and compile
it. The file containing the routine must have the same name as the routine, with either
a.pro or a.sav extension. After trying to open the file in the user’s current working
directory, IDL will attempt to open the file in each of the directories given by the
I'PATH system variable, in the order specified by !PATH. The search stops with the
first directory containing afile with the desired name.

IDL now maintains an in-memory cache of the .pro and .sav fileslocated in
directories referenced viathe !PATH system variable. This path cache is built
automatically during normal operation, as IDL searches the directories specified by
IPATH to locate the code for IDL routines required at runtime. The path cache
operates on a per-directory basis. The current contents of the path cache can be
viewed using the HELP, /PATH_CACHE command. See “ Enhancement to the HEL P
Routine” on page 35 for more details.

Onceadirectory iscached, IDL knowswhether or not it contains agiven file, without
the need to actually attempt to open that file. Thisinformation allows IDL to skip the
open attempt in directories that do not have the desired file. As such, the path cache
can provide a significant boost in the speed of path searching. The startup speed of
large abject oriented applications, is significantly improved by the path cache, as
method resolution requires heavy path searching activity.

The PATH_CACHE procedureis used to control IDL’s use of the path cache. In
almost all cases, the operation of the path cache is transparent to the IDL user, save
for the boost in path searching speed it provides. The cache automatically adjusts to
changes made to the setting of 'PATH without the need for manual intervention.
Hence, PATH_CACHE should not be necessary in typical IDL operation. It existsto
allow complete control over the details of how and when the caching operation is
performed. See “PATH_CACHE” in the IDL Reference Guide manual for more
details.

What's New in IDL 6.0 New Path Caching

18 Chapter 1: Overview of New Features in IDL 6.0

Visualization Enhancements

The following enhancements have been made to IDL’s visualization functionality for
the 6.0 release:

e Object Graphics Font Rendering Improvements
¢ New Depth Buffer Controls for Graphic Objects

Object Graphics Font Rendering Improvements

IDL 6.0 incorporates the FreeType Library for improved rendering of Object
Graphicsfonts. Previously, charactersin an IDLgrText object were rendered by
tessellating each glyph outline into a set of small triangles. IDL 6.0 renders an entire
IDLgrText string as a high quality bitmap, which is texture mapped onto asingle
polygon. This technique allows for clearer characters at any size, easier

mani pul ations, background colors, kerning, and blending. For information on the
FreeType Project, visit http://www.freetype.org.

The propertiesto IDLgrText related to this new font rendering are:
 ALPHA_CHANNEL
¢ FILL_BACKGROUND
* FILL_COLOR
* KERNING
+ RENDER_METHOD

Note
FreeType font rendering is now the default text rendering method in IDL. If you
need to switch back to the triangle method, the RENDER_METHOD property can
be used to change the type of font rendering.

For more details on these properties, see“IDLgrText” on page 81.
Examples: Font Rendering Improvements

The following example routines show how to use the new font propertiesto the
IDLgrText object. While running these routines, you can proceed to the next display
by quitting (File — Quit) out of the current XOBJVIEW display.

Visualization Enhancements What's New in IDL 6.0

http://www.freetype.org

Chapter 1: Overview of New Features in IDL 6.0 19

This first example compares simple font rendering tasksin IDL 6.0 and previous
versions of IDL.

PRO ExConpar eSi npl eFont s

; Create previous version text object and IDL 6.0 text
; object (with kerning applied).

oText1l = OBJ_NEW'IDLgrText', '"IDL 5.6', $
RENDER_METHOD = 1, LOCATIONS = [0, 0.05, 0])
oText2 = OBJ_NEW' I DLgrText', '"IDL 6.0, $

LOCATIONS = [0, -0.05, 0], /KERN NG

; Show the text objects.

oMbdel = OBJ_NEW' | DLgr Model ')
oMbdel -> Add, oTextl

oModel -> Add, oText2

XOBJVI EW oModel , /BLOCK

; Put a polygon behind the text and give the IDL 6.0 text
; a background col or.
oText2 -> SetProperty, FILL_BACKGROUND = 1, $
FILL_COLOR = [0, 255, 0]
oPoly = OBJ_NEW' I DLgr Pol ygon', [-0.1, 0.1, 0.1, -0.1], $
[0.1, 0.1, -0.1, -0.1], [O., O., O., O.], %
COLOR = [255, 0, 0], /DEPTH_OFFSET)

Show t he pol ygon and updat ed text objects.
oMbdel -> Add, oPoly
XOBJVI EW oModel , /BLOCK

; Make the text senmi-transparent to let the polygon
; show t hrough and display the results.

oText2 -> SetProperty, ALPHA CHANNEL = 0.5

XOBJVI EW oMddel , /BLOCK

; O eanup.
OBJ_DESTROY, [oModel]

END

What's New in IDL 6.0 Visualization Enhancements

20

Visualization Enhancements

Chapter 1: Overview of New Features in IDL 6.0

The following figure shows the results of this example:

IDL 5.6 5.6 5.6
IDL 6.0 Fﬁ 6.0

Figure 1-1: FreeType Rendering Compared to Previous Rendering

The following example is more involved than the previous one. It shows how to use
IDL 6.0'sfont rendering improvements to clarify cluttered axis and data |abels.

PRO ExFr eeTypeAxes

; Create data.
angle = 2.*IPI*(0.5 - (FINDGEN(37)/36.))
anpl i tude = 5*SI N(angl e)

; Create a nodel to contain the plots, axes, labels, and titles
; to that nodel.
oMbdel = OBJ_NEW'' | DLgr Model ')

; Create plots and add themto the nodel.
oPlots = OBJARR(5)
FORi =0, 4 DO BEG N
oPlots[i] = OBJ_NEW'IDLgrPlot', angle, $
(anmplitude*(1. - (i*0.05))))
ENDFOR
oPlots[0] -> GetProperty, XRANGE = xRange, YRANGE = yRange
oMbdel -> Add, oPlots

Create axes and add themto the nodel.
OXAxis = OBJ_NEW'IDLgrAxis', 0, $
RANGE = xRange, /EXACT)
oMbdel -> Add, oXAxis
OYAXis = OBJ_NEW' IDLgrAxis', 1, $
RANGE = yRange, /EXACT)
oMbdel -> Add, oYAxis

; Create | abels and add themto the nodel.
xLabel = 2. *IPI*(0.5 - (FINDGEN(20)/19.))
yLabel = 5*SI N(xLabel)

oLabel s = OBJARR(N_ELEMENTS(xLabel))

FOR i = 0, (N_ELEMENTS(oLabels) - 1) DO BEG N

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 21

oLabel s[i] = OBJ_NEW' IDLgrText', $
STRTRI M xLabel [i],2), $
LOCATION = [xLabel [i], yLabel[i]], $
CHAR DI MENSIONS = [0.3, 0.3], $
ALl GNVENT = 0. 5)
ENDFOR
oMbdel -> Add, olLabels

i Create titles and add themto the nodel.

oXTitle = OBJ_NEW' IDLgrText', $
"Al pha = Angle (Radians)', LOCATION = [0, yRange[O0]], $
ALI GNMENT = 0.5, CHAR DIMENSIONS = [0.5, 0.5], $
ZCOORD _CONV = [0.1, 1])

oMbdel -> Add, oXTitle

oYTitle = OBJ_NEW' IDLgrText', $
"Epsilon = Anplitude (Centineters)', $
LOCATI ON = [xRange[0], 0], ALIGNMENT = 0.5, $
CHAR DI MENSIONS = [0.5,0.5], BASELINE =[O0, 1], $
UPDIR = [-1, 0], ZCOORD CONV = [0.1, 1])

oMbdel -> Add, oYTitle

oTitle = OBJ_NEW' IDLgrText', 'SINE WAVE , $
ALI GNVENT = 0.5, VERTI CAL_ALI GNVENT = -1.,
LOCATI ONS = [MEAN(xRange), yRange[1]], $
CHAR DIMENSIONS = [0.7, 0.7])

oMbdel -> Add, oTitle

$

; Display the nodel.
XOBJVI EW oMdel, /BLOCK, SCALE = 0.9, $
TITLE = 'Origi nal Display'

;. Make the axis titles transl ucent.

OoXTitle -> SetProperty, /FlILL_BACKGROUND, $
FILL_CO.OR = [230, 230, 230], ALPHA CHANNEL

oYTitle -> SetProperty, /FILL_BACKGROUND, $
FILL_COLOR = [230, 230, 230], ALPHA CHANNEL

I
e
o1

0.5

: Make the | abels translucent.

FOR i = 0, (N_ELEMENTS(oLabels) - 1) DO BEG N
oLabel s[i] -> SetProperty, ALPHA CHANNEL = 0.6

ENDFOR

; Display the nodified nodel.
XOBJVI EW oMbdel , /BLOCK, SCALE = 0.9, $
TITLE = ' I nproved Di spl ay’

Cl eanup obj ect references.
OBJ_DESTROY, oMbdel

END

What's New in IDL 6.0 Visualization Enhancements

22 Chapter 1: Overview of New Features in IDL 6.0

New Depth Buffer Controls for Graphic Objects

In graphics rendering, the depth buffer is an array of depth values maintained by a
graphics device, one value per pixel, to record the depth of primitives rendered at
each pixel. It isusually used to prevent the drawing of objects located behind other
objects that have already been drawn in order to generate a visually correct scene. In
IDL, smaller depth values are closer to the viewer.

New propertiesto graphic objectsin IDL 6.0 provide more control over how Object
Graphics primitives are affected by the depth buffer. You can now control which
primitives may be rejected from rendering by the depth buffer, how the primitives are
rejected, and which primitives may update the depth buffer.

Control of the depth buffer is achieved through atest function or by completely
disabling the buffer. The depth test function isalogical comparison function used by
the graphics device to determineif a pixel should be drawn on the screen. This
decision is based on the depth value currently stored in the depth buffer and the depth
of the primitive at that pixel location.

Thetest function is applied to each pixel of an object. A pixel of the object isdrawn if
the object’s depth at that pixel passes the test function set for that object. If the pixel
passes the depth test, the depth buffer value for that pixel isalso updated to the pixel’s
depth value.

The possible test functions are;
¢ INHERIT - use the test function set for the parent model or view.
* NEVER - never passes.

e LESS- passesif the depth of the object’s pixel isless than the depth buffer’'s
value.

e EQUAL - passesif the depth of the object’s pixel is equal to the depth buffer’'s
value.

e LESSOR EQUAL - passesif the depth of the object’s pixel islessthan or
equal to the depth buffer’s value.

* GREATER - passesif the depth of the object’s pixel is greater than or equal to
the depth buffer’'s value.

« NOT EQUAL - passesif the depth of the object’s pixel isnot equal to the depth
buffer's value.

Visualization Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 23

e GREATER OR EQUAL - passesif the depth of the object’s pixel is greater
than or equal to the depth buffer’'s value.

e ALWAYS - aways passes

The IDL default is LESS. Commonly used values are LESS and LESS OR EQUAL,
which alow primitives closer to the viewer to be drawn.

Disabling the depth test function allows all primitives to be drawn on the screen

without testing their depth against the values in the depth buffer. When the depth test
is disabled, the graphics device effectively uses the painter’s algorithm to update the
screen. That is, the last item drawn at alocation is the item that remains visible. The
depth test function of ALWAY S produces the same result as disabling the depth test.

Moreover, you can disable updating the depth buffer. Disabling depth buffer writing
prevents the updating of depth information as primitives are drawn to the frame
buffer. Such primitives are unprotected in the sense that any other primitive drawn
later at that location will draw over it asif it were not there.

Most atomic graphics abjects now have the following new properties related to the
depth buffer:

« DEPTH_TEST DISABLE
e DEPTH_TEST_FUNCTION
« DEPTH_WRITE_DISABLE
For more details on these properties, see “New IDL Object Properties’ on page 45.

What's New in IDL 6.0 Visualization Enhancements

24 Chapter 1: Overview of New Features in IDL 6.0

Analysis Enhancements

The following enhancements have been made to IDL’s data analysis functionality for
the 6.0 release:

* New FITA and STATUS Keywords to CURVEFIT
* New MEASURE_ERRORS Keyword to GAUSSFIT
* New PIXEL_CENTER Keyword for ROl Masks
* Enhancementsto the INTERVAL_VOLUME, ISOSURFACE, and
MESH_DECIMATE Routines
New FITA and STATUS Keywords to CURVEFIT

The FITA keyword to the CURVEFIT routine allows you to specify parameters that
should remain fixed.

The STATUS keyword to the CURVEFIT routine specifies a named variable that will
contain an integer indicating the status of the computation.

See “CURVEHRIT” on page 99 for more details.
New MEASURE_ERRORS Keyword to GAUSSFIT

A new MEASURE_ERRORS keyword has been added to GAUSSFIT, which alows
you to passin avector of standard measurement errors for each data point. Prior to
IDL6.0, GAUSSFIT would assume measurement errors of 1.0 for each point. Now, if
MEASURE_ERRORS is not specified, the measurement errors are assumed to be
Z€ro.

See “GAUSSFIT” on page 101 for more details.
New PIXEL_CENTER Keyword for ROl Masks

You can now fine tune the offset between pixels and coordinates for ROI vertices.
The PIXEL_CENTER alows you to specify the location of the lower-left mask pixel.

For more details, see “IDLanROI::ComputeMask” on page 96.

Analysis Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 25

Enhancements to the INTERVAL_VOLUME,
ISOSURFACE, and MESH_DECIMATE Routines

The INTERVAL_VOLUME procedure, |ISOSURFACE procedure, and
MESH_DECIMATE function now provide away to monitor the progress of the
algorithms performed by these routines; using the PROGRESS CALLBACK,
PROGRESS_METHOD, PROGRESS OBJECT, PROGRESS PERCENT, and
PROGRESS _USERDATA keywords. By using these keywords, you can present
progress bars to your users during the execution of these routines. See
“INTERVAL_VOLUME” on page 102, “I SOSURFACE" on page 104, and
“MESH_DECIMATE” on page 107 for details.

What's New in IDL 6.0 Analysis Enhancements

26

Chapter 1: Overview of New Features in IDL 6.0

Language Enhancements

The following enhancements have been made to the core of the IDL Language for the
6.0 release:

Increment and Decrement Operators

Compound Assignment Operators

New Logica Operators

New Logica Operation Functions

LOGICAL_PREDICATE Compilation Option

Multiple Subscripts Now Allowed On Assignment ASSOC Variables

|EEE Floating Point NaN Comparisons Give Correct Results Under Microsoft
Windows

Enhancement to the ARRAY _EQUAL Routine
Enhancement to the HEL P Routine
Enhancement to the MESSAGE Routine
Enhancement to the RESOLVE_ALL Routine
Enhancement to the SHMMAP Routine
Enhancement to the STRSPLIT Routine

New ARRAY _INDICES Function

New IDL_VALIDNAME Function

Increment and Decrement Operators

IDL now includesincrement (++) and decrement (--) operators that can be applied to
variables of any numeric type. The ++ operator increments the target variable by one.
The -- operator decrements the target by one.

Increment and decrement operators can be used, along with avariable, as standalone

statements:
o A++0Or++A
e A-oOr--A

Language Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 27

The increment or decrement operator may be placed either before or after the target
variable. The same operation is carried out in either case. These operators are very
efficient, since the variable is incremented in place and no temporary copies of the
data are made.

Theincrement and decrement operators can aso be used within expressions. When
the operator follows the target expression, it is applied after the value of the target is
evaluated for use in the surrounding expression. When the operator precedes the
target expression, it is applied before the value of the target is evaluated for use in the
surrounding expression. For example, after executing the following statements, the
value of the variable A is 27, while B is 28:

B
A

27
B++

In contrast, after executing the following statements, both A and B have avalue of 26:

B
A

27
--B

Although the standal one statement and expression forms are very similar, the
expression form has some efficiency and side-effect issues that do not apply to the
statement form. See “ Increment/Decrement” in Chapter 2 of the Building IDL
Applications manual for details.

Compound Assignment Operators

IDL now supports the following compound assignment operators:

= #= *= += -=

/= <= >= AND= EQ=
GE= GT= LE= LT= MOD=
NE= OR= XOR= 7=

These compound operators combine assignment with another operator. A statement
such as:

A op= expression

where op isan IDL operator that can be combined with the assignment operator to
form one of the above-listed compound operators, and expression isany IDL
expression, produces the same result as the statement:

A = A op (expression)

What's New in IDL 6.0 Language Enhancements

28 Chapter 1: Overview of New Features in IDL 6.0

The statement using the compound operator makes more efficient use of memory
because it performs the operation on the target variable A in place. In contrast, the
statement using the simple operators makes a copy of the variable A, performs the
operation on the copy, and then assigns the resulting value back to A, temporarily
using extra memory.

The following statement:
A op= expression
is equivalent to the IDL statement:
A = TEMPORARY(A) op (expression)

which usesthe TEMPORARY function to avoid making a copy of the variable A.
While there is no efficiency benefit to using the compound operator rather than the
TEMPORARY function, the compound operator allows you to write the same
statement more succinctly.

Compound Operators and Whitespace

When using the compound operators that include an operator referenced by a
keyword rather than a symbol (AND=, for example), you must be careful to use
whitespace between the operator and the target variable. Without appropriate
whitespace, the result will not be what you expect. Consider the difference between
these two statements:

AAND= 23
A AND= 23

Thefirst statement assigns the value 23 to a variable named AAND. The second
statement performsthe AND operation between A and 23, storing the result back into
A.

Compound operators that do not involve IDL keywords (+=, for example) do not
require whitespace in order to be properly parsed by IDL, athough such whitespace
is recommended for code readability. That is, the statements

A+=23
A += 23

areidentical, but the latter is more readable.

Language Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 29

New Logical Operators

There are three new logical operatorsin IDL: &&, ||, and ~.

&&

Thelogical && operator performs the logical short-circuiting “and” operation on two
scalars or one-element arrays, returning 1 if both operands are true and O if either
operand isfalse.

Thelogical | | operator performsthe logical short-circuiting “or” operation on two
scalars or one-element arrays, returning 1 if either of the operandsistrue and O if
both are false.

Thelogical ~ operator performsthe logical “not” operation on ascalar or array
operand. If the operand isascalar, it returns scalar 1 if the operand isfalse or scalar 0
if the operand istrue. If the operand is an array, it returns an array containing a 1 for
each element of the operand array that isfalse, and a0 for each element that is true.

Note
Programmers familiar with the C programming language, and the many languages
that share its syntax, may expect ~ to perform bitwise negation (1's complement),
and for! to be used for logical negation. Thisisnot thecasein IDL: ! isusedto
reference system variables, the NOT operator performs bitwise negation, and ~
performslogical negation.

When is an Operand True?

When evaluated by alogica operator, an expression is considered to be “true” under
the following conditions:

e For numerical operands, if the value is non-zero.
e For string operands, if the value is non-null.

» For heap variables (pointers and object references), if the point or object
reference is non-null.

What's New in IDL 6.0 Language Enhancements

30 Chapter 1: Overview of New Features in IDL 6.0

Short-circuiting

The&& and| | logica operators are short-circuiting operators. This meansthat IDL
does not evaluate the second operand unless it is necessary in order to determine the
proper overall answer. Short-circuiting behavior can be powerful, sinceit alows you
to base the decision to compute the value of the second operand on the value of the
first operand. For instance, in the expression:

Result = Opl && Op2

IDL does not evaluate Op2 if Op1 isfalse, because it already knows that the result of
the entire operation will be false. Similarly in the expression:

Result = Opl || Op2

IDL does not evaluate Op2 if Op1 istrue, because it already knows that the result of
the entire operation will be true.

If you want to ensure that both operands are evaluated (perhaps because the operand
is an expression that changes value when evaluated), use the new LOGICAL_AND
and LOGICAL_OR functions (described in the next section) or the bitwise AND and
OR operators.

New Logical Operation Functions

IDL 6.0 introduces three new functions that perform logical Boolean operations on
their arguments:

LOGICAL_AND

The new LOGICAL_AND function performs alogical AND operation on its
arguments. It returns True (1) if both of its arguments are non-zero (non-NULL for
strings and heap variables), or False (0) otherwise.

Unlike the && operator, LOGICAL_AND does not short-circuit when evaluating its
arguments. Both arguments are always evaluated.

Note
LOGICAL_AND awaysreturns either 0 or 1, unlike the AND operator, which
performs a bitwise AND operation on integers, and returns one of the two
arguments for other types.

For more information, see “LOGICAL_AND” in the IDL Reference Guide manual.

Language Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 31

LOGICAL_OR

The new LOGICAL_OR function performs alogical OR operation on its arguments.
It returns True (1) if either of its arguments are non-zero (non-NULL for strings and
heap variables), and False (0) otherwise.

Unlikethe| | operator, LOGICAL_OR does not short-circuit when evaluating its
arguments. Both arguments are always evaluated.

Note
LOGICAL_OR always returns either 0 or 1, unlike the OR operator, which

performs a bitwise OR operation on integers, and returns one of the two arguments
for other types.

For more information, see “LOGICAL_OR” in the IDL Reference Guide manual.
LOGICAL_TRUE

The new LOGICAL_TRUE function returns True (1) if its arguments are non-zero
(non-NULL for strings and heap variables), and False (0) otherwise.

For more information, see “LOGICAL_TRUE" in the IDL Reference Guide manual.
LOGICAL_PREDICATE Compilation Option

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears. The LOGICAL_PREDICATE
compilation option has been added in IDL 6.0.

When running aroutine compiled with the LOGICAL_PREDICATE option set, from
the point where the COMPILE_OPT statement appears until the end of the routine,
IDL will treat any non-zero or non-NULL predicate value as “true,” and any zero or
NULL predicate value as “false.”

What's New in IDL 6.0 Language Enhancements

32

Chapter 1: Overview of New Features in IDL 6.0

Background

A predicate expression is an expression that is evaluated as being “true” or “false” as
part of a statement that controls program execution. IDL evaluates such expressions
in the following contexts:

e |F...THEN. .. ELSE statements
e ? : inline conditional expressions
e VHI LE. .. DOstatements

e REPEAT. .. UNTI L statements

« when evaluating the result from an INIT function method to determineif acall
to OBJ NEW successfully created a new object

By default, IDL usesthe following rules to determine whether an expression istrue or
false:

e Integer — Aninteger isconsidered trueif itsleast significant bitis 1, and false
otherwise. Hence, odd integers are true and even integers (including zero) are
false. Thisinterpretation of integer truth values is sometimes referred to as
“bitwise,” reflecting the fact that the value of the least significant bit
determines the result.

¢ Other — Non-integer numeric types are true if they are non-zero, and false
otherwise. String and heap variables (pointers and object references) aretrueif
they are non-NULL, and false otherwise.

The LOGICAL_PREDICATE option atersthe way IDL evaluates predicate
expressions. When LOGICAL_PREDICATE is set for aroutine, IDL usesthe
following rules to determine whether an expression istrue or false:

* Numeric Types— A number is considered trueiif its value is non-zero, and
false otherwise.

e Other Types— Strings and heap variables (pointers and object references) are
considered true if they are non-NULL, or false otherwise.

Note on the NOT Operator

When using the LOGICAL_PREDICATE compile option, you must be aware of the
fact that applying the IDL NOT operator to integer data computes a bitwise negation
(1's complement), and is generally not applicable for usein logical computations.
Consider the common construction:

WHI LE (NOT EOF(1un)) DO BEG N

ENDWHI LE

Language Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 33

The EOF function returns 0 while the file specified by LUN has data | eft, and returns
1 when hits the end of file. However, the expression “NOT 1" has the numeric value
-2. When the LOGICAL_PREDICATE option is not in use, the WHILE statement
sees -2 asfase; if the LOGICAL_PREDICATE isin use, -2 isatrue value and the
above loop will not terminate as desired.

The proper way to write the above loop uses the ~ logical negation operator:
WHI LE (~EOF(1un)) DO BEG N

ENDVWHI LE

It isworth noting that this version will work properly whether or not the
LOGICAL_PREDICATE compile option isin use. Logical negation operations
should aways use the ~ operator in preference to the NOT operator, reserving NOT
exclusively for bitwise computations.

Multiple Subscripts Now Allowed On Assignment
ASSOC Variables

An associated variable (created viathe ASSOC function) is a variable that maps the
structure of an IDL array or structure variable onto the contents of afile. Thefileis
treated as an array of these repeating units of data. The first array or structurein the
file has an index of 0, the second as an index of 1, and so on. Such variables do not
keep datain memory like anormal variable. Instead, when an associated variableis
subscripted with the index of the desired array or structure within thefile, IDL
performs the input/output operation required to access the data. In all cases, the entire
array associated with an index isinput or output as a complete unit.

Previous versions of IDL allow you to specify additional subscriptsin addition to the
array index when fetching datain order to extract sub-elements of the array. Thisis
implemented by reading the entire array into memory, and then performing the
subscripted fetch operation on thisin memory copy. This ability was allowed on data
input only - only asingle array index was allowed when writing data back. Hence,
data could be written to an ASSOC variable only as acomplete array. This limitation
has been removed with IDL 6.0. Multiple subscripts can now be specified both
reading and writing.

What's New in IDL 6.0 Language Enhancements

34 Chapter 1: Overview of New Features in IDL 6.0

The following statements use an associated variable of 10x10 arraysin thefile
dat a. dat toillustrate:

OPENW wunit, 'data.dat', /GET_LUN ; Open file.

A = ASSOC(unit, FLTARR(10, 10)) ; Associate vari abl e.
Al 1] = FI NDGEN(10) ; Wite findgen array val ue
; to file at index 1.
B=A2 3, 1] ; Read data el enent [2,3]
; fromthe array at index 1.
Al 2, 3, 1] = 1001.7 ; Wite new value to data
; element [2,3] of array at
; index 1.

Thefina statement aboveisallowed by IDL 6.0, but not by previous versions. Itis
implemented by reading the entire array at the specified index into memory,
performing the subscripted store operation on the in-memory copy, and then writing
the entire array back to the file at the specified index.

Note
Although notationally convenient, specifying multiple subscripts to ASSOC
variables can be inefficient due to all the implicit Input/Output it generates. For
large numbers of such accesses, we recommend reading the entire array into
memory once, performing all the operations on the in-memory variable, and then
writing the array back.

IEEE Floating Point NaN Comparisons Give Correct
Results Under Microsoft Windows

According to the |EEE floating point standard, the Not A Number value (NaN) has
the unique property that it is not equal to any other number, including itself. In IDL
terms, this means that the expression:

! VALUES. F_NAN EQ ! VALUES. F_NAN

should yield the value False (0). Making this work is the shared responsibility of the
underlying hardware, operating system, and language compiler used to build a
program (in the case of IDL, of the C/C++ compiler used to build IDL). Many
programs use this identity to locate the NaN values within data.

Previous Microsoft C/C++ compilers did not generate floating point code that works
properly in this case, and comparisons of NaN with itself would incorrectly yield
True (1). IDL 6.0 is built with the latest Microsoft Visual C/C++ 7.0 compiler, which
generates correct floating point code for IEEE comparisons. Hence, IDL 6.0 for
Microsoft Windows correctly evaluates NaN comparisons.

Language Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 35

This meansthat IDL 6.0 properly evaluates NaN comparisons on all supported
platforms, the first release in IDL history for which this has been true.

Enhancement to the ARRAY_EQUAL Routine

The ARRAY_EQUAL function now also works on pointer and object references.
When ARRAY _EQUAL is used with these types of references, it compares the
references, not the heap variables to which the references point.

Enhancement to the HELP Routine

The HEL P procedure has been enhanced with the PATH_CACHE keyword, which
allowsyou to display alist of directories currently included in the IDL path cache,
along with the number of .pro or .sav filesfound in those directories. See “New Path
Caching” on page 17 for more details on path caching.

Enhancement to the MESSAGE Routine

The MESSAGE procedure now allows you to re-issue the most recent error, using the
REISSUE LAST keyword. By using this keyword in conjunction with the CATCH
procedure, your code can catch an error caused by called code, perform recovery
actions, and then reissue the error to your caler. See “MESSAGE” on page 109 for
details.

Enhancement to the RESOLVE_ALL Routine

The RESOLVE_ALL procedure now allows you to specify alist of object class
names via the new CLASS keyword. Class definition files for the specified classes
and their superclasses are compiled, as are all methods of the specified classes and
their superclasses. See “RESOLVE_ALL” on page 109 for details.

Enhancement to the SHMMAP Routine
The SHMMAP routine has been enhanced to allow creation of a private file mapping

to afile for which the user has only read permission. See“*SHMMAP" on page 110
for details.

What's New in IDL 6.0 Language Enhancements

36 Chapter 1: Overview of New Features in IDL 6.0

Enhancement to the STRSPLIT Routine

The STRSPLIT function now allows you to abtain the number of matched substrings
returned by STRSPLIT viathe new COUNT keyword. See“STRSPLIT” on page 110
for details.

New ARRAY _INDICES Function

The new ARRAY _INDICES function converts one-dimensional subscripts of an
array into corresponding multi-dimensional subscripts. See “ARRAY _INDICES’ in
the IDL Reference Guide manual for more details.

New IDL_VALIDNAME Function

The new IDL_VALIDNAME function determines whether a string may be used as a
valid IDL identifier (e.g. variable name, structure tag name, etc.). See
“IDL_VALIDNAME” inthe IDL Reference Guide manual for more details.

Language Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 37

File Access Enhancements

The following enhancements have been made in the area of File Accessin the IDL
6.0 release:

¢ NetCDF Library Update
¢ Enhancement to the FILE_LINES Routine
« New FILE_BASENAME and FILE_DIRNAME Functions

NetCDF Library Update

IDL 6.0 has been upgraded to use NetCDF version 3.5. Thislibrary upgrade does not
include new functionality added to the NetCDF code library since version 2.4.
However, it does take advantage of performance improvements, bug fixes, and other
such enhancements.

Enhancement to the FILE_LINES Routine

The FILE_LINES function now allows you to obtain the number of lines of text
within a GZIP compressed file or files, using the COMPRESS keyword. If this
keyword is set, FILE_LINES assumes the input files are compressed in the standard
GZIP format, and decompresses the data to count the number of lines. See
“FILE_LINES’ on page 100 for details.

New FILE_ BASENAME and FILE_DIRNAME
Functions

Given afile path, the new FILE_BASENAME function returns the base file name it
references, and the new FILE_DIRNAME function returns the directory part (i.e. al
of the path except for the base file name). These functions are similar to, and based
on, the standard Unix basename(1) and dirname(1) utilities.

See“FILE_ BASENAME” and “FILE_DIRNAME” in the IDL Reference Guide
manual for more details.

What's New in IDL 6.0 File Access Enhancements

38 Chapter 1: Overview of New Features in IDL 6.0

IDLDE Enhancements

The IDL Development Environment has been enhanced in the following ways for the
6.0 release:

¢ Path Cache Preference
* New Visualization Menu for iTools

Path Cache Preference

The Path tab of the Preferences dialog now allows you to enable or disable the IDL
path cache mechanism.

New Visualization Menu for iTools

The new Visualization submenu to the File —» New menu allows you to access the
five new pre-built iTools for interactive plotting.

|File Edit Search Runm Project Macros ‘Window Help

New 4 Editor |+ | ==
CIpEn. .. Chrl+C Gl
Close Project... | % Bt B

_ Yisualization iConkaur
Open Project. ..)
save Project mage

]_ Pt
Save Projeck &s...)

_ iSurface
Clase Projeck _

ivolurne

Figure 1-2: New Visualization Menu

See “New iToolsfor Interactive Analysis’ on page 10 for more information on the
pre-built iTools.

IDLDE Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 39

User Interface Toolkit Enhancements

Thefollowing enhancements have been madeto IDL’s Ul toolkit for the 6.0 release to
help you give your IDL applications more powerful and friendly user interfaces:

¢ Enhancementsto the DIALOG_PICKFILE Routine

e Button Widget Enhancements

e New WIDGET_PROPERTY SHEET Function

¢ Enhancementsto the WIDGET_CONTROL and WIDGET _INFO Routines

Enhancements to the DIALOG_PICKFILE Routine

The DIALOG_PICKFILE function now allows you to specify a default extension,
with the DEFAULT_EXTENSION keyword. By setting this keyword to a scalar
string representing the default extension, you can append the value returned by
DIALOG_PICKFILE with this extension.

You can now also prompt users when using DIALOG_PICKFILE to attempt to
overwrite files. By setting the OVERWRITE_PROMPT keyword along with the
WRITE keyword, DIALOG_PICKFILE will automatically prompt the user with an
overwrite dialog when afile that already existsis selected. See
“DIALOG_PICKFILE” on page 99 for details.

Button Widget Enhancements

The PUSHBUTTON_EVENTS keyword has been added to WIDGET_BUTTON,
allowing you to create buttons that generate separate widget events when the mouse
button or space bar is pressed and released. See “WIDGET_BUTTON” on page 111
for details.

The PUSHBUTTON_EVENTS keyword has been added to WIDGET_CONTROL,
allowing you to change the widget event generation properties of a button widget
after creation. See“WIDGET_CONTROL” on page 112 for details.

The PUSHBUTTON_EVENTS keyword has been added to WIDGET _INFO,
allowing you to query the pushbutton events setting of a specified button widget. See
“WIDGET_INFO” on page 113 for details.

What's New in IDL 6.0 User Interface Toolkit Enhancements

40 Chapter 1: Overview of New Features in IDL 6.0

New WIDGET_PROPERTYSHEET Function

The new WIDGET_PROPERTY SHEET function creates a property sheet widget,
which exposes the properties of an IDL object in agraphical interface.

For more details, see “WIDGET_PROPERTY SHEET” in the IDL Reference Guide
manual.

Enhancements to the WIDGET_CONTROL and
WIDGET _INFO Routines

The WIDGET_CONTROL procedure and the WIDGET _INFO function now allow
access to the new property sheet widget.

By setting WIDGET_CONTROL's new REFRESH_PROPERTY keyword to a
property identifier or array of identifiers, you can synchronize the identified
properties with their values in a component. See “WIDGET_CONTROL” on
page 112 for more details.

By setting WIDGET _INFO’'s new COMPONENT keyword to an object reference of
a component, you can query specific components within a property sheet containing
multiple components. By setting WIDGET _INFO’s new PROPERTY _VALID
keyword to a string, you can determineif that string isavalid identifier. If the
identifier isvalid, WIDGET_INFO's new PROPERTY _VALUE keyword can be set
to thisidentifier to retrieve the value of the identified property within the property
sheet. See “WIDGET _INFO” on page 113 for more details.

Enhancement to WIDGET_DROPLIST
Thevalue of thelist in adroplist widget can now be retrieved using the GET_VALUE

keyword to WIDGET_CONTROL. Thelist values are returned as a scalar string or
string array.

User Interface Toolkit Enhancements What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 41

Documentation Enhancements

In addition to documentation for new and enhanced IDL features, the following
enhancements to the IDL documentation set are included in the 6.0 release:

* New iTools User's Guide

¢ New iTools Developer's Guide
New iTools User’s Guide

The new iTools are a set of interactive utilities that combine data analysis and
visualization with the task of producing presentation quality graphics. Five iTools
have been pre-built in IDL 6.0:

» iContour - for contour lines
e ilmage - for image displays
e iPlot - for two and three dimensional plots
e iSurface - for surface representations
¢ iVolume - for volume visualizations
TheiTools User’s Guide walks you through calling these tools and using the i Tool
system interactively.
New iTools Developer’s Guide

The new iTool system can be used to extend the pre-built tools with your own
operations, manipulations, visualization types, and GUI controls. This system can
also be used to create your own custom tools based on the iTools component
framework. The iTools Developer’s Guide instructs you on how to use the iTools
component framework to develop your own i Tools or build on existing ones.

What's New in IDL 6.0 Documentation Enhancements

42 Chapter 1: Overview of New Features in IDL 6.0

New and Enhanced IDL Objects

This section describes the following:
« New IDL Object Classes
* New IDL Object Properties
e |DL Object Property Enhancements
» |IDL Object Method Enhancements

Note
All the atomic graphical (IDLgr*) object classes are now subclasses of the new

IDLitComponent object class.

New IDL Object Classes

The following table describes the new object classesin IDL 6.0 for Windows.

New Object Class Description

IDLitCommand The base functionality for theiTools
command buffer system.

IDLitCommandSet A container for IDLitCommand objects,
which allows a group of commands to be
managed as a single item.

IDLitComponent A core or base component, from which all
other components subclass.

Note - Thisclassis now asuperclass of al
the atomic graphical (IDLgr*) object
classes.

IDLitContainer A specialization of the IDL_Container class
that manages a collection of
IDLitComponents and provides methods
for working with the Identifier system of the
iTools framework.

New and Enhanced IDL Objects What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

43

New Object Class

Description

IDLitData

A generic data storage object that can hold
any IDL datatype available. It provides
typing, metadata, and data change
notification functionality. When coupled
with IDLitDataContainer, it forms the
element for the construction of composite
data types.

IDLitDataContainer

A container for IDLitDataand
IDLitDataContainer objects. This container
isused to form hierarchical data structures.
Data and DataContainer objects can be
added and removed to/from a
DataContainer during program execution,
allowing for dynamic creation of composite
data types.

IDLitDataOperation

A subclassto IDLitOperation that
automates data access and automatically
records information for the undo-redo
system.

IDLitIMessaging

An interface providing common methods to
send or trigger messaging and error actions,
which may occur during execution.

IDLitManipulator

The base functionality of theiTools
manipul ator system.

IDLitManipulatorContainer

A container for IDLitManipulator objects,
which allows for the construction of
manipulator hierarchies. This container
implements the concept of a current
manipulator for the itemsit contains.

IDLitManipulatorM anager

A specialization of the manipulator
container (IDLitManipulatorContainer),
which acts as the root of the manipulator
hierarchy.

IDLitManipulatorVisual

The basis of all visual elements associated
with an interactive manipulator.

What's New in IDL 6.0

New and Enhanced IDL Objects

44 Chapter 1: Overview of New Features in IDL 6.0

New Object Class Description

IDLitOperation The basisfor al iTool operations. It defines
how an operation is executed and how
information about the operation is recorded
for the command transaction (undo-redo)
system.

IDLitParameter An interface providing parameter
management methods to associate
parameter names with IDLitData objects.

IDLitParameterSet A specialized subclass of the
IDLitDataContainer class. This class
provides the ability to associate names with
contained IDLitData objects.

IDLitReader The definition of the interface and the
process used to construct file readersfor the
iToolsframework. When anew filereader is
constructed for the iTools system, a new
classis subclassed from this IDLitReader
class.

IDLitTool All the functionality provided by a
particular instance of an IDL Intelligent
Tool (iToal). This object provides the
management systems for the underlying
tool functionality.

IDLitUI A link between the underlying functionality
of aniTool and the IDL widget interface.

IDLitVisualization The basisfor al iTool visualizations. All
visualization components subclassfrom this
class.

IDLitWindow The basisfor al iTool visualization

windows. All iTool visualization windows
subclass from this class.

New and Enhanced IDL Objects What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 45

New Object Class

Description

IDLitWriter

The definition of the interface and the
process used to construct file writers for the
i Tools framework. When anew filewriter is
constructed for the iTools system, a new
classis subclassed from this IDLitWriter
class.

IDLjavaObject

An IDL object encapsulating a Java object.
IDL provides datatype and other translation
services, alowing IDL programs to access
the Java object’s methods and properties
using standard IDL syntax.

New IDL Object Properties

The following table describes new and updated propertiesto IDL objects.

IDLgrAXxis

New Property

Description

DEPTH_TEST_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.

What's New in IDL 6.0

New and Enhanced IDL Objects

46

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).
Set this property to any of the following values to
use the desired function while rendering this
object.
* 0=INHERIT - use thetest function set for the
parent model or view.
* 1=NEVER - never passes.
o 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.
* 3=EQUAL - passesif the depth of the object’s
pixel isequa to the depth buffer's value.
* 4=LESSOR EQUAL - passesif the depth of

the object’s pixel isless than or equal to the
depth buffer’s value.

* 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

* 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer's
value.

e 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’'s value.

* 8= ALWAYS - dways passes
Note - Less means closer to the viewer.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 47

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

What's New in IDL 6.0

New and Enhanced IDL Objects

48 Chapter 1: Overview of New Features in IDL 6.0

New Property Description

REGISTER_PROPERTIES | Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrAXxis, the available properties and their
iTool datatypes are:

* COLOR (color)

» DEPTH_TEST_DISABLE (enumerated list)
» DEPTH_TEST_FUNCTION (enumerated list)
+ DEPTH_WRITE_DISABLE (enumerated list)
* DIRECTION (enumerated list)

» EXACT (Boolean)

* EXTEND (Boolean)

* GRIDSTYLE (linestyle)

» HIDE (Boolean)

» LOG (Boolean)

* MAJOR (integer)

* MINOR (integer)

* NOTEXT (Boolean)

* PALETTE (user-defined)

» SUBTICKLEN (float)

» TEXTPOS (user-defined)

* THICK (thickness)

* TICKDIR (enumerated list)

* TICKINTERVAL (float)

* TICKLAYOUT (enumerated list)

» TICKLEN (float)

e TICKUNITS (string)

New and Enhanced IDL Objects What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

IDLgrBuffer

49

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrBuffer, the available properties and
their iTool datatypes are:

+ COLOR_MODEL (enumerated list)
N_COLORS (integer)

PALETTE (user-defined)
QUALITY (enumerated list)
RESOLUTION (user-defined)

IDLgrClipboard

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrClipboard, the available properties
and their iTool datatypes are:

* COLOR_MODEL (enumerated list)
N_COLORS (integer)

PALETTE (user-defined)
QUALITY (enumerated list)
RESOLUTION (user-defined)

What's New in IDL 6.0

New and Enhanced IDL Objects

50

IDLgrContour

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other abjects already on the
screen, even if the object islocated behind them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 51

New Property Description

DEPTH_TEST_FUNCTION | Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel isdrawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).
Set this property to any of the following valuesto
use the desired function while rendering this
object.

e 0=INHERIT - usethetest function set for the

parent model or view.

¢ 1=NEVER - never passes.

e 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.

* 3=EQUAL - passesif the depth of the object’s
pixel isequal to the depth buffer’s value.

e 4=LESSOR EQUAL - passesif the depth of

the object’s pixel isless than or equal to the
depth buffer's value.

* 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer's value.

e 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer’s
value.

e 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’'s value.

e 8=ALWAYS - always passes
Note - Less means closer to the viewer.

What's New in IDL 6.0 New and Enhanced IDL Objects

52

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object islocated in front of them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 53

New Property Description

REGISTER_PROPERTIES | Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrContour, the available properties and
their iTool datatypes are:

* ANISOTROPY (user-defined)

* C_COLOR (user-defined)

e C_FILL_PATTERN (user-defined)

e C_LINESTYLE (user-defined)

e C_THICK (user-defined)

* C_VALUE (user-defined)

e COLOR (color)

» DEPTH_OFFSET (integer)

* DEPTH_TEST_DISABLE (enumerated list)
* DEPTH_TEST_FUNCTION (enumerated list)
* DEPTH_WRITE_DISABLE (enumerated list)
* DOWNHILL (enumerated list)

e FILL (Boolean)

« HIDE (Boolean)

* MAX_VALUE (float)

* MIN_VALUE (float)

* N_LEVELS (integer)

* PALETTE (user-defined)

* PLANAR (enumerated list)

e SHADING (enumerated list)

* TICKINTERVAL (float)

* TICKLEN (float)

What's New in IDL 6.0 New and Enhanced IDL Objects

54

IDLgrimage

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 55

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixd is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).
Set this property to any of the following valuesto
use the desired function while rendering this
object.
¢ 0=INHERIT - usethetest function set for the
parent model or view.
¢ 1=NEVER - never passes.
e 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.
 3=EQUAL - passesif the depth of the object’s
pixel isequal to the depth buffer’s value.
e 4=LESSOR EQUAL - passesif the depth of

the object’s pixel islessthan or equal to the
depth buffer’s value.

¢ 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

¢ 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer’'s
value.

e 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

e 8= ALWAYS - always passes
Note - Less means closer to the viewer.

What's New in IDL 6.0

New and Enhanced IDL Objects

56

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display ina
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrImage, the available properties and their
iTool data types are:

* BLEND_FUNCTION (user-defined)

e CHANNEL (integer)

¢ COLOR (color)

« DEPTH_TEST_DISABLE (enumerated list)

* DEPTH_TEST_FUNCTION (enumerated list)
* DEPTH_WRITE_DISABLE (enumerated list)
* DIMENSIONS (user-defined)

e GREYSCALE (Boolean)

« HIDE (Boolean)

¢ INTERLEAVE (enumerated list)

* INTERPOLATE (enumerated list)

* LOCATION (user-defined)

¢ ORDER (enumerated list)

e PALETTE (user-defined)

e SUB_RECT (user-defined)

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

IDLgrLight

57

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrLight, the available properties and
their iTool datatypes are:

ATTENUATION (user-defined)
COLOR (color)

CONEANGLE (integer)
DIRECTION (user-defined)
FOCUS (float)

HIDE (Boolean)

INTENSITY (float)
LOCATION (user-defined)
PALETTE (user-defined)
TYPE (enumerated list)

What's New in IDL 6.0

New and Enhanced IDL Objects

58

IDLgrModel

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing all objects contained in this
model. Set this property to 2 to explicitly enable
depth testing for all objects contained in this
model. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.
Thisvalue may be overridden by individual models
or abjects contained in this model.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 59

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS.
The graphics device compares the object’s depth at
aparticular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel isdrawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled). Thisvalue
may be overridden by individual models or objects
contained in this model.

Set this property to any of the following valuesto
use the desired function while drawing al objects
contained in this model.

* 0=INHERIT - usethetest function set for the
parent model or view.

* 1=NEVER - never passes.

e 2=LESS- passesif the depth of the object’s
pixel islessthan the depth buffer’s value.

* 3=EQUAL - passesif the depth of the abject’s
pixel isequal to the depth buffer’s value.

e 4=LESSOR EQUAL - passesif the depth of

the object’s pixel islessthan or equal to the
depth buffer's value.

* 5= GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer's value.

e 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer's
value.

» 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

e 8= ALWAYS - adways passes
Note - Less means closer to the viewer.

What's New in IDL 6.0

New and Enhanced IDL Objects

60 Chapter 1: Overview of New Features in IDL 6.0

New Property Description

DEPTH_WRITE_DISABLE | Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while drawing the objects contained in this
model. Set this property to 2 to explicitly enable
depth writing for the objects contained in this
model. Disabling depth writing allows an object to
be overdrawn by other objects, even if the object is
located in front of them.This value may be
overridden by individual models or objects
contained in this model.

REGISTER_PROPERTIES | Set this property to automatically register the
following properties of the object for display ina
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrModel, the available properties and their
iTool datatypes are:

» CLIP_PLANES (user-defined)

o DEPTH_TEST_DISABLE (enumerated list)

e DEPTH_TEST_FUNCTION (enumerated list)
* DEPTH_WRITE_DISABLE (enumerated list)
» HIDE (Boolean)

* LIGHTING (enumerated list)

e SELECT_TARGET (Boolean)

¢ TRANSFORM (user-defined)

New and Enhanced IDL Objects What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 61

IDLgrPlot

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.

What's New in IDL 6.0

New and Enhanced IDL Objects

62

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in the
depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel isdrawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following valuesto
use the desired function while rendering this object.

e 0=INHERIT - usethetest function set for the
parent model or view.

¢ 1=NEVER - never passes.

e 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.

* 3=EQUAL - passesif the depth of the object’s
pixel is equal to the depth buffer’s value.

e 4=LESSOR EQUAL - passesif the depth of

the object’s pixel islessthan or equal to the
depth buffer's value.

e 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer's value.

e 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer’s
value.

e 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

* 8=ALWAYS- adways passes
Note - Less means closer to the viewer.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 63

New Property Description

DEPTH_WRITE_DISABLE | Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object islocated in front of them.

REGISTER_PROPERTIES | Set this property to automatically register the
following properties of the object for display in a
property sheet. This property isuseful mainly when
creating iTools. By default, no properties are
registered.

For IDLgrPlot, the available properties and their
iTool datatypes are:

¢ COLOR (colar)

* DEPTH_TEST_DISABLE (enumerated list)

* DEPTH_TEST_FUNCTION (enumerated list)
* DEPTH_WRITE_DISABLE (enumerated list)
* HIDE (Boolean)

* HISTOGRAM (Boolean)

* LINESTYLE (linestyle)

* MAX_VALUE (float)

* MIN_VALUE (float)

* NSUM (integer)

* PALETTE (user-defined)

* POLAR (Boolean)

e THICK (thickness)

e VERT_COLORS (user-defined)

What's New in IDL 6.0 New and Enhanced IDL Objects

64

IDLgrPolygon

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 65

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may al so set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixd is drawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).
Set this property to any of the following valuesto
use the desired function while rendering this
object.
* 0=INHERIT - use thetest function set for the
parent model or view.
* 1=NEVER - never passes.
e 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.
» 3=EQUAL - passesif the depth of the object’s
pixel isequal to the depth buffer’s value.
* 4=LESSOR EQUAL - passesif the depth of

the object’s pixel islessthan or equal to the
depth buffer’s value.

* 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

* 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer’'s
value.

» 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

* 8=ALWAYS- aways passes
Note - Less means closer to the viewer.

What's New in IDL 6.0

New and Enhanced IDL Objects

66

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object islocated in front of them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

67

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display ina
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrPolygon, the available properties and
their iTool data types are:

BOTTOM (color)

COLOR (color)

DEPTH_OFFSET (integer)
DEPTH_TEST_DISABLE (enumerated list)
DEPTH_TEST_FUNCTION (enumerated list)
DEPTH_WRITE_DISABLE (enumerated list)
HIDDEN_LINE (Boolean)

HIDE (Boolean)

LINESTYLE (linestyle)

PALETTE (user-defined)

REJECT (enumerated list)

SHADING (enumerated list)

STYLE (enumerated list)
TEXTURE_INTERP (enumerated list)
TEXTURE_MAP (user-defined)

THICK (thickness)

VERT_COLORS (user-defined)
ZERO_OPACITY_SKIP (Boolean)

What's New in IDL 6.0

New and Enhanced IDL Objects

68

IDLgrPolyline

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 69

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel isdrawn
at that location on the screen and the depth buffer
isupdated (if depth writing is enabled).
Set this property to any of the following values to
use the desired function while rendering this
object.
* 0=INHERIT - usethe test function set for the
parent model or view.
* 1=NEVER - never passes.
o 2=LESS- passesif the depth of the object’s
pixel is less than the depth buffer’s value.
» 3=EQUAL - passesif the depth of the object’s
pixel isequal to the depth buffer’s value.
* 4=LESSOR EQUAL - passesif the depth of

the object’s pixel isless than or equal to the
depth buffer’s value.

* 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

* 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer's
value.

» 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer's value.

* 8=ALWAYS - aways passes
Note - Less means closer to the viewer.

What's New in IDL 6.0

New and Enhanced IDL Objects

70

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, eveniif the
object is located in front of them.

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrPolyline, the avail able properties and
their iTool data types are:

* COLOR (color)

» DEPTH_TEST_DISABLE (enumerated list)

» DEPTH_TEST_FUNCTION (enumerated list)
« DEPTH_WRITE_DISABLE (enumerated list)
» HIDE (Boolean)

e LINESTYLE (linestyle)

* PALETTE (user-defined)

» SHADING (enumerated list)

* THICK (thickness)

* VERT_COLORS (user-defined)

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 71

IDLgrPrinter

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrPrinter, the available properties and
their iTool datatypes are:

+ COLOR_MODEL (enumerated list)
N_COLORS (integer)

PALETTE (user-defined)
QUALITY (enumerated list)
RESOLUTION (float)

IDLgrROI

New Property

Description

DEPTH_TEST_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.

What's New in IDL 6.0

New and Enhanced IDL Objects

72

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel isdrawn
at that location on the screen and the depth buffer
isupdated (if depth writing is enabled).
Set this property to any of the following values to
use the desired function while rendering this
object.
* 0=INHERIT - usethe test function set for the
parent model or view.
* 1=NEVER - never passes.
o 2=LESS- passesif the depth of the object’s
pixel is less than the depth buffer’s value.
» 3=EQUAL - passesif the depth of the object’s
pixel isequal to the depth buffer’s value.
* 4=LESSOR EQUAL - passesif the depth of

the object’s pixel isless than or equal to the
depth buffer’s value.

* 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

* 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer's
value.

» 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer's value.

* 8=ALWAYS- aways passes
Note - Less means closer to the viewer.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 73

New Property Description

DEPTH_WRITE_DISABLE | Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
aso enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, eveniif the
object is located in front of them.

REGISTER_PROPERTIES | Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrROI, the available properties and their
iTool datatypes are:

* COLOR (color)

» DEPTH_TEST_DISABLE (enumerated list)

» DEPTH_TEST_FUNCTION (enumerated list)
* DEPTH_WRITE_DISABLE (enumerated list)
» HIDE (Boolean)

e LINESTYLE (linestyle)

* PALETTE (user-defined)

» THICK (thickness)

What's New in IDL 6.0 New and Enhanced IDL Objects

74

IDLgrROIGroup

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 75

New Property Description

DEPTH_TEST_FUNCTION | Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer
isupdated (if depth writing is enabled).

Set this property to any of the following valuesto
use the desired function while rendering this
object.

¢ 0=INHERIT - usethetest function set for the
parent model or view.

¢ 1=NEVER - never passes.

e 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.

e 3=EQUAL - passesif the depth of the
object’s pixel is equal to the depth buffer's
value.

e 4=LESSOR EQUAL - passesif the depth of

the object’s pixel islessthan or equal to the
depth buffer’s value.

¢ 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

¢ 6=NOT EQUAL - passesif the depth of the
object’s pixel isnot equal to the depth buffer’'s
value.

e 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

e 8= ALWAYS - always passes
Note - Less means closer to the viewer.

What's New in IDL 6.0 New and Enhanced IDL Objects

76

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrROIGroup, the available properties and
their iTool datatypes are:

¢ COLOR (color)

DEPTH_TEST_DISABLE (enumerated list)
DEPTH_TEST_FUNCTION (enumerated list)
DEPTH_WRITE_DISABLE (enumerated list)
HIDE (Boolean)

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 77

IDLgrScene

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrScene, the available properties and
their iTool datatypes are:

¢ COLOR (color)
« HIDE (Boolean)
« TRANSPARENT (Boolean)

IDLgrSurface

New Property

Description

DEPTH_TEST_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object islocated behind them.

What's New in IDL 6.0

New and Enhanced IDL Objects

78

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel is drawn
at that location on the screen and the depth buffer
isupdated (if depth writing is enabled).

Set this property to any of the following valuesto
use the desired function while rendering this
object.

¢ 0=INHERIT - usethetest function set for the
parent model or view.

¢ 1=NEVER - never passes.

e 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.

e 3=EQUAL - passesif the depth of the
object’s pixel isequal to the depth buffer’s
value.

¢ 4=LESSOR EQUAL - passesif the depth of

the object’s pixel islessthan or equal to the
depth buffer’s value.

¢ 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

¢ 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer’'s
value.

e 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

e 8= ALWAYS - always passes
Note - Less means closer to the viewer.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 79

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object is located in front of them.

What's New in IDL 6.0

New and Enhanced IDL Objects

80

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrSurface, the avail able properties and
their iTool datatypes are:

BOTTOM (color)

COLOR (color)

DEPTH_OFFSET (integer)
DEPTH_TEST_DISABLE (enumerated list)
DEPTH_TEST_FUNCTION (enumerated list)
DEPTH_WRITE_DISABLE (enumerated list)
EXTENDED_LEGO (Boolean)
HIDDEN_LINES (Boolean)

HIDE (Boolean)

LINESTYLE (linestyle)

MAX_VALUE (float)

MIN_VALUE (float)

PALETTE (user-defined)

SHADING (enumerated list)
SHOW_SKIRT (Boolean)

SKIRT (float)

STYLE (enumerated list)
TEXTURE_HIRES (Boolean)
TEXTURE_INTERP (enumerated list)
TEXTURE_MAP (user-defined)

THICK (thickness)

USE TRIANGLES (enumerated list)
VERT_COLORS (user-defined)
ZERO_OPACITY _SKIP (Boolean)

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 81

IDLgrText

New Property

Description

ALPHA_CHANNEL

Set this property to avalue in the range [0.0, 1.0]
(1.0 isthe default) to draw the text foreground and
background with the specified blending factor. A
value of 1.0 draws the text opaquely without
blending the text with objects already drawn on the
destination. Edges of the glyphs are always
blended. A value of 0.0 drawsno text at all. A value
in the middle of the range draws the text semi-
transparently, which provides away of creating
labels that are visible while allowing features
blocked by the labelsto still be seen. This property
is used only when the RENDER_METHOD in
effect is O (Texture).

DEPTH_TEST_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the abject is located behind them.

What's New in IDL 6.0

New and Enhanced IDL Objects

82

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in the
depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel isdrawn
at that location on the screen and the depth buffer is
updated (if depth writing is enabled).

Set this property to any of the following valuesto
use the desired function while rendering this object.

e 0=INHERIT - usethetest function set for the
parent model or view.

¢ 1=NEVER - never passes.

e 2=LESS- passesif the depth of the object’s
pixel isless than the depth buffer’s value.

* 3=EQUAL - passesif the depth of the object’s
pixel is equal to the depth buffer’s value.

e 4=LESSOR EQUAL - passesif the depth of

the object’s pixel islessthan or equal to the
depth buffer's value.

e 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer's value.

e 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer’s
value.

e 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer’s value.

* 8=ALWAYS- adways passes
Note - Less means closer to the viewer.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 83

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, even if the
object islocated in front of them.

FILL_BACKGROUND

Set this property to zero (the default) to render the
text with atransparent bitmap background,
alowing graphics behind the text to show through
between the glyphs. Set this property to non-zero to
draw the text bitmap background with the color
specified by the FILL_COL OR property. This
property can only be used when
RENDER_METHOD is set to 0 (Texture).

FILL_COLOR

Set this property to an RGB color vector or color
index value to specify that the text bitmap
background should be drawn using the specified
color. This property is used only when the
FILL_BACKGROUND property has anon-zero
value and the RENDER_METHOD in effect is0
(Texture). Set this property to -1 (the default) to
specify that the text background should be drawn
using the current view background color.

What's New in IDL 6.0

New and Enhanced IDL Objects

84

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

KERNING

Set this property to anon-zero value (the default is
zero) to enable kerning while rendering characters.
Kerning reduces the amount of space between
glyphsif the shape of each glyph allowsit,
according to the font information stored in the
font'sfile. For example, the letters"A" and "V"
placed together, "AV", contains space that can be
reduced by kerning. Enabling kerning may not
necessarily result in rendering glyphs more closely
together because some fonts do not contain the
required kerning information. This property is used
only when RENDER_METHOD is 0 (Texture).

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

85

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display ina
property sheet. This property isuseful mainly when
creating iTools. By default, no properties are
registered.

For IDLgrText, the available properties and their
iTool datatypes are:

ALIGNMENT (float)

ALPHA_CHANNEL (float)

BASELINE (user-defined)

COLOR (color)

DEPTH_TEST_DISABLE (enumerated list)
DEPTH_TEST_FUNCTION (enumerated list)
DEPTH_WRITE_DISABLE (enumerated list)
FILL_BACKGROUND (Boolean)
FILL_COLOR (color)

HIDE (Boolean)

KERNING (Boolean)

LOCATIONS (user-defined)

ONGLASS (Boolean)

PALETTE (user-defined)
RECOMPUTE_DIMENSIONS (enumerated
list)

RENDER_METHOD (enumerated list)
STRINGS (user-defined)

UPDIR (user-defined)
VERTICAL_ALIGNMENT (float)

What's New in IDL 6.0

New and Enhanced IDL Objects

86

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

RENDER_METHOD

Set this property to one of the following values:
* 0(zero) TEXTURE - IDL renders the text by

placing a bitmap representation of a glyph into
atexture map and then rendering a polygon
with the texture map. How the background
portions of the texture map are drawn and how
the entire texture map is blended into the scene
are controlled by the ALPHA_CHANNEL,
FILL_COLOR, and FILL_BACKGROUND
properties. Leaving these three properties set to
their default values produces a result that
closely approximates the TRIANGLES
rendering method. One important differenceis
that the glyph bitmaps are generated by the
FreeType font rendering library, producing
glyphsthat are more accurately rendered and
anti-aliased than those drawn with the
TRIANGLES method. The TEXTURE method
cannot be used on indexed color destinations.
Thetext isrendered with the TRIANGLES
method if the destination uses indexed color.

1 (one) TRIANGLES - IDL renders the text by
tessellating the glyph outline into a set of small
triangles that are then drawn to produce the
solid glyph. IDL also draws ablended line
around the edge of the glyph to approximate
anti-aliasing. This setting used to be the default
behavior for IDL versions prior to IDL 6.0.

Note - If IDLgrClipboard or IDLgrPrinter is drawn
in vector mode (VECTOR = 1), any IDLgrText
objectsin the display are drawn asiif the
RENDER_METHOD property was set to 1
(TRIANGLES).

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

IDLgrView

87

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrView, the available properties and
their iTool datatypes are:

¢ COLOR (color)

e DEPTH_CUE (user-defined)
 DOUBLE (Boolean)

* EYE (float)

¢ HIDE (enumerated list)

* LOCATION (user-defined)

* PROJECTION (enumerated list)
* TRANSPARENT (Boolean)

¢ UNITS (enumerated list)

« VIEWPLANE_RECT (user-defined)
o ZCLIP (user-defined)

IDLgrViewgroup

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrViewgroup, the available properties
and their iTool datatypes are:

« HIDE (Boolean)

What's New in IDL 6.0

New and Enhanced IDL Objects

88

IDLgrVolume

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_TEST DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth testing. A model may
also enable or disable depth testing. Set this
property to 1 to explicitly disable depth buffer
testing while drawing this object. Set this property
to 2 to explicitly enable depth testing for this
object. Disabling depth testing allows an object to
draw itself on top of other objects already on the
screen, even if the object is located behind them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 89

New Property

Description

DEPTH_TEST_FUNCTION

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always sets a depth test function of LESS. A
model may also set adepth test function value. The
graphics device compares the object’s depth at a
particular pixel location with the depth stored in
the depth buffer at that same pixel location. If the
comparison test passes, the object’s pixel isdrawn
at that location on the screen and the depth buffer
isupdated (if depth writing is enabled).
Set this property to any of the following values to
use the desired function while rendering this
object.
* 0=INHERIT - usethe test function set for the
parent model or view.
* 1=NEVER - never passes.
o 2=LESS- passesif the depth of the object’s
pixel is less than the depth buffer’s value.
» 3=EQUAL - passesif the depth of the object’s
pixel isequal to the depth buffer’s value.
* 4=LESSOR EQUAL - passesif the depth of

the object’s pixel isless than or equal to the
depth buffer’s value.

* 5=GREATER - passesif the depth of the
object’s pixel is greater than or equal to the
depth buffer’s value.

* 6=NOT EQUAL - passesif the depth of the
object’s pixel is not equal to the depth buffer's
value.

» 7=GREATER OR EQUAL - passesif the
depth of the object’s pixel is greater than or
equal to the depth buffer's value.

* 8=ALWAYS - aways passes
Note - Less means closer to the viewer.

What's New in IDL 6.0

New and Enhanced IDL Objects

90

Chapter 1: Overview of New Features in IDL 6.0

New Property

Description

DEPTH_WRITE_DISABLE

Set this property to O (the default) to inherit the
value set by the parent model or view. The parent
view always enables depth writing. A model may
also enable or disable depth writing. Set this
property to 1 to explicitly disable depth buffer
writing while rendering this object. Set this
property to 2 to explicitly enable depth writing for
this object. Disabling depth writing allows an
object to be overdrawn by other objects, eveniif the
object is located in front of them.

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

91

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display in a
property sheet. This property is useful mainly
when creating iTools. By default, no properties are
registered.

For IDLgrVolume, the available properties (and
their iTool datatypes) are:

* AMBIENT (color)

BOUNDS (user-defined)
COMPOSITE_FUNCTION (enumerated list)
CUTTING_PLANES (user-defined)
DEPTH_CUE (user-defined)
DEPTH_TEST_DISABLE (enumerated list)
DEPTH_TEST_FUNCTION (enumerated list)
DEPTH_WRITE_DISABLE (enumerated list)
HIDE (enumerated list)

HINTS (enumerated list)

INTERPOLATE (enumerated list)
LIGHTING_MODEL (Boolean)

PALETTE (user-defined)

RENDER_STEP (user-defined)
TWO_SIDED (enumerated list)

ZBUFFER (Boolean)
ZERO_OPACITY_SKIP (Boolean)

What's New in IDL 6.0

New and Enhanced IDL Objects

92 Chapter 1: Overview of New Features in IDL 6.0

IDLgrVRML
New Property Description
REGISTER_PROPERTIES Set this property to automatically register the

following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrVRML, the available properties and
their iTool datatypes are:

+ COLOR_MODEL (enumerated list)
N_COLORS (integer)

PALETTE (user-defined)
QUALITY (enumerated list)
RESOLUTION (user-defined)

New and Enhanced IDL Objects What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0

IDLgrWindow

93

New Property

Description

REGISTER_PROPERTIES

Set this property to automatically register the
following properties of the object for display
in a property sheet. This property is useful
mainly when creating iTools. By default, no
properties are registered.

For IDLgrWindow, the available properties
and their iTool datatypes are:

* COLOR_MODEL (enumerated list)
* CURRENT_ZOOM (float)

¢ DIMENSIONS (user-defined)
 DISPLAY_NAME (string)

* LOCATION (user-defined)

¢ N_COLORS (integer)

* PALETTE (user-defined)

e QUALITY (enumerated list)
 RENDERER (enumerated list)

« RESOLUTION (float)

¢ RETAIN (enumerated list)

e TITLE (string)

¢ UNITS (enumerated list)

* VIRTUAL_DIMENSIONS (user-defined)
* VISIBLE_LOCATION (user-defined)

VIRTUAL_DIMENSIONS

Set this property to atwo-element vector,
[width, height], specifying the dimensions of
the virtual canvasfor thiswindow. The default
is[0, O], indicating that the virtual canvas
dimensions should match the visible
dimensions (as specified viathe
DIMENSIONS keyword).

What's New in IDL 6.0

New and Enhanced IDL Objects

94 Chapter 1: Overview of New Features in IDL 6.0

New Property Description

VISIBLE_LOCATION Set this property to a two-element vector,

[, V], specifying the lower left location of the
visible portion of the canvas (relative to the
virtual canvas).

IDL Object Property Enhancements

The following table describes updated propertiesto IDL object classes.

Note
The following table contains an update to the documentation for the

RECOMPUTE_DIMENSIONS property of the IDLgrText object class. This
property in IDL 6.0 has not functionally changed from previous versions of IDL.

New and Enhanced IDL Objects What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 95

IDLgrText

Item Description

RECOMPUTE_DIMENSIONS | Set this property to one of the following values:

» 0=Thephysical size of thetext is affected
by model and view transforms. The size of
the text in terms of data unitsis obtained
from CHAR_DIMENSIONS. Sincethe
character dimensions are specified in data
units, the text will maintain the data space
size specified by CHAR_DIMENSIONS as
the transforms change. In other words, the
physical text size changes along with other
primitives. If the value of this property is
[0, Q], the text font’s point sizeis used to
compute the physical size of thetext in
terms of data units using the transformsin
effect for the first draw. This setting is the
default value for this property.

» 1=Thephysical size of thetext isonly
affected by model transforms. The
CHAR_DIMENSIONS property is
ignored. The size of the text is computed
from the font’s point size the first timeit is
drawn, and IDL does not try to keep the
size of the text constant with respect to
changesin the model transforms.

» 2=Thephysica size of thetext isheld
constant, even as the model and view
change. The CHAR_DIMENSIONS
property isignored and the text is always
drawn with aphysical size equal to the text
font's point size. IDL adjustsitsinternal
text transforms to maintain the physical
size of the text.

What's New in IDL 6.0 New and Enhanced IDL Objects

96

Chapter 1: Overview of New Features in IDL 6.0

IDL Object Method Enhancements

The following table describes new and updated keywords and argumentsto IDL

object methods.
IDLanROI::ComputeMask

Item

Description

PIXEL_CENTER

Set this keyword to a 2-element vector, [X, y],
to indicate where the lower-left mask pixel is
centered relative to a Cartesian grid. The
default value is[0.0, 0.0], indicating that the
lower-left pixel is centered at [0.0, 0.0].

New and Enhanced IDL Objects

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 97

New and Enhanced IDL Routines

This section describes the following:
¢ New IDL Routines

* |DL Routine Enhancements
New IDL Routines

Thefollowing isalist of new functions and procedures added to IDL in thisrelease.

New Routine Description

ARRAY _INDICES Converts one-dimensional subscripts of an
array into corresponding multi-dimensional
subscripts.

FILE_ BASENAME Returns the basename of afile path. The
basename is the final rightmost segment of the
file path.

FILE_ DIRNAME Returnsthe dirname of afile path. The dirname

isall of the file path except for the final
rightmost segment of the file path.

ICONTOUR Creates an i Tool and associated user interface
(UI) configured to display and manipulate
contour data.

IDL_VALIDNAME Determines whether a string may be used asa
valid IDL variable name or structure tag name.

IDLITSYS CREATETOOL Creates an instance of the specified tool
registered within the iTools system.

IIMAGE Creates an iTool and associated user interface
(UI) configured to display and manipulate
image data.

IPLOT Creates an iTool and associated user interface
(UI) configured to display and manipulate plot
data.

What's New in IDL 6.0 New and Enhanced IDL Routines

98

Chapter 1: Overview of New Features in IDL 6.0

New Routine

Description

ISURFACE Creates an iTool and associated user interface
(UI) configured to display and manipulate
surface data.

ITCURRENT Set the current tool in the i Tools system.

ITDELETE Deletes atool in theiTools system.

ITGETCURRENT Getsthe identifier of the current tool in the
iTools system.

ITREGISTER Registers tool object classes with theiTools
system.

ITRESET Resets the iTools session.

IVOLUME Creates an iTool and associated user interface
(U1) configured to display and manipulate
volume data.

LOGICAL_AND Performs alogical AND operation on its
arguments, which can be scalar or array.

LOGICAL_OR Performs alogical OR operation on its

arguments, which can be scalar or array.

LOGICAL_TRUE

Determines whether its argument, which can be
scalar or array, is non-zero (or non-NULL).

PATH_CACHE

Controls IDL’s path caching mechanism.

WIDGET_PROPERTY SHEET

Creates aproperty sheet widget, which exposes
the properties of an IDL object in agraphical
interface.

New and Enhanced IDL Routines

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 99

IDL Routine Enhancements

Thefollowing isalist of new and updated keywords, arguments, and/or return values
to existing IDL routines.

CURVEFIT
Keyword or item Description
FITA Set this keyword to avector, with as many

elements as A, which contains a zero for each
fixed parameter, and anon-zero value for elements
of Atofit. If not supplied, al parameters are taken
to be non-fixed.

STATUS Possible return values for STATUS are:
¢ 0= The computation was successful.

e 1=The computation failed. Chi-square was
increasing without bounds.

« 2 =The computation failed to convergein
ITMAX iterations.

DIALOG_PICKFILE

Keyword or item Description

DEFAULT_EXTENSION | Set this keyword to ascalar string
representing the default extension to be
appended onto the returned file name or
names. If the returned file name already has
an extension, then the value set for this
keyword is not appended. The value for this
keyword should not include the period (.).

Note - This keyword only appliesto file
names typed into the dialog. This keyword
does not apply to files selected within the
dialog.

What's New in IDL 6.0 New and Enhanced IDL Routines

100 Chapter 1: Overview of New Features in IDL 6.0

Keyword or item Description

OVERWRITE_PROMPT | If thiskeyword is set along with the WRITE
keyword and the user selects afile that
aready exists, then adialog will be
displayed asking if the user wantsto replace
the existing file or not. For multiple
selections, the user is prompted separately
for each file. If the user selects No then the
user isreturned to the file selection dialog; if
the user selects Yes then the selectionis
alowed. This keyword has no effect unless
the WRITE keyword is also set.

FILE_LINES
Keyword or item Description
COMPRESS If thiskeyword is set, FILE_LINES assumes that

the files specified in Path contain data compressed
in the standard GZIP format, and decompresses the
datain order to count the number of lines. See the
description of the COMPRESS keyword to the
OPEN procedure for additional information.

New and Enhanced IDL Routines What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 101

GAUSSFIT

Keyword or item Description

MEASURE_ERRORS | Set this keyword to a vector containing standard
measurement errors for each point in the Y input
argument. This vector must be the same length as
the input arguments, X and Y.

Note - For Gaussian errors (for example,
instrumental uncertainties), MEASURE_ERRORS
should be set to the standard deviations of each
point in Y. For Poisson or statistical weighting,
MEASURE_ERRORS should be set to SQRT(Y).

HELP
Keyword or item Description
PATH_CACHE Set this keyword to display alist of directories currently

included inthe IDL path cache, along with the number of
.pro or .sav filesfound in those directories. See
“PATH_CACHE” inthe IDL Reference Guide manual for
details.

What's New in IDL 6.0 New and Enhanced IDL Routines

102

INTERVAL_VOLUME

Chapter 1: Overview of New Features in IDL 6.0

Keyword or item

Description

PROGRESS_CALLBACK

Set this keyword to a scalar string containing the
name of the IDL function that the
INTERVAL_VOLUME procedure calls at
PROGRESS PERCENT intervals asit generates
the interval volume.

The PROGRESS CALLBACK function returns a
zeroto signal INTERVAL_VOLUME to stop
generating the interval volume. This causes
INTERVAL_VOLUME to return asingle vertex
and a connectivity array of [-1], which specifiesan
empty mesh. If the callback function returns any
non-zero value, INTERVAL_VOLUME continues
to generate the interval volume.

The PROGRESS_CALLBACK function must
specify a single argument, Percent, which
INTERVAL_VOLUME setsto an integer between
0 and 100, inclusive.

The PROGRESS_CALLBACK function may
specify an optional USERDATA keyword
parameter, which INTERVAL_VOLUME setsto
the variable provided in the
PROGRESS_USERDATA keyword.

The following code shows an example of a
progress callback function:

FUNCTI ON myPr ogr essCal | back, $
percent, USERDATA = nyStruct

oProgressBar = nyStruct. oProgressBar

; This nmethod updates the progress bar
; graphic and returns TRUE if the user
has NOT pressed the cancel button.
keepGoi ng = oProgressBar -> $

Updat ePr ogr essVal ue(percent)

RETURN, keepGoi ng

END

New and Enhanced IDL Routines

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 103

Keyword or item Description

PROGRESS_ METHOD Set this keyword to a scalar string containing the
name of afunction method that the
INTERVAL_VOLUME procedure calls at
PROGRESS PERCENT intervals asit generates
the interval volume. If this keyword is set, then the
PROGRESS OBJECT keyword must be set to an
object reference that is an instance of a class that
defines the specified method.

The PROGRESS METHOD function method
callback has the same specification as the callback
described in the PROGRESS_CALLBACK
keyword, except that it is defined as an object class
method:

FUNCTI ON nyd ass: : myProgressCal | back, $
percent, USERDATA = nyStruct

PROGRESS OBJECT Set this keyword to an object reference that is an
instance of aclass that defines the method
specified with the PROGRESS METHOD
keyword. If this keyword is set, then the
PROGRESS METHOD keyword must also be set.

PROGRESS PERCENT Set this keyword to ascalar in therange[1, 100] to
specify the interval between invocations of the
callback function. The default valueis5 and IDL
silently clamps other valuesto the range [1, 100].

For example, avalue of 5 (the default) specifies
INTERVAL _VOLUME will call the callback
function when the interval volume processis 0%
complete, 5% complete, 10% complete, ..., 95%
complete, and 100% compl ete.

PROGRESS_USERDATA | Set this property to any IDL variable that
INTERVAL_VOLUME passes to the callback
function in the callback function’s USERDATA
keyword parameter. If this keyword is specified,
then the callback function must be able to accept
keyword parameters.

What's New in IDL 6.0 New and Enhanced IDL Routines

104

ISOSURFACE

Chapter 1: Overview of New Features in IDL 6.0

Keyword or item

Description

PROGRESS_CALLBACK

Set this keyword to a scalar string containing
the name of the IDL function that
ISOSURFACE cdlsat PROGRESS _PERCENT
intervals as it generates the isosurface.

The PROGRESS CALLBACK function returns
azero to signal ISOSURFACE to stop
generating the isosurface. This causes
ISOSURFACE to return asingle vertex and a
connectivity array of [-1], which specifies an
empty polygon. If the callback function returns
any non-zero value, ISOSURFACE continuesto
generate the isosurface.

The PROGRESS CALLBACK function must
specify a single argument, Percent, which
ISOSURFACE sets to an integer between 0 and
100, inclusive.

The PROGRESS_CALLBACK function may
specify an optional USERDATA keyword
parameter, which ISOSURFACE sets to the
variable provided in the
PROGRESS_USERDATA keyword.

The following code shows an example of a
progress callback function:

FUNCTI ON nyPr ogr essCal | back, percent, $
USERDATA = nyStruct

oProgressBar = nyStruct. oProgressBar

; This nethod updates the progress bar
; graphic and returns TRUE if the user
has
; NOT pressed the cancel button.
keepCoi ng = oProgressBar -> $

Updat ePr ogr essVal ue(percent)

RETURN, keepGoi ng

END

New and Enhanced IDL Routines

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 105

Keyword or item Description

PROGRESS_METHOD Set this keyword to a scalar string containing
the name of afunction method that
|SOSURFACE cdlsat PROGRESS _PERCENT
intervals asit generates the isosurface. If this
keyword is set, then the PROGRESS_OBJECT
keyword must be set to an object reference that
isan instance of a class that definesthe
specified method.

The PROGRESS METHOD function method

callback has the same specification as the

callback described in the

PROGRESS CALLBACK keyword, except

that it is defined as an object class method:
FUNCTI ON nyd ass: : nyProgr essCal | back,

$
percent, USERDATA = nyStruct

PROGRESS OBJECT Set this keyword to an object referencethat isan
instance of aclass that defines the method
specified with the PROGRESS METHOD
keyword. If this keyword is set, then the
PROGRESS METHOD keyword must also be
Set.

PROGRESS PERCENT Set this keyword to ascalar intherange[1, 100]
to specify the interval between invocations of
the callback function. The default valueis 5 and
IDL silently clamps other valuesto therange|[1,
100].

For example, avalue of 5 (the default) specifies
ISOSURFACE will call the callback function
when the isosurface processis 0% compl ete,
5% compl ete, 10% complete, ..., 95% compl ete,
and 100% compl ete.

What's New in IDL 6.0 New and Enhanced IDL Routines

106 Chapter 1: Overview of New Features in IDL 6.0

Keyword or item Description

PROGRESS USERDATA | Set this property to any IDL variable that

| SOSURFACE passes to the callback function
in the callback function’s USERDATA keyword
parameter. If this keyword is specified, then the
callback function must be able to accept

keyword parameters.
LMGR
Keyword or item Description
VM Set this keyword to test whether the current IDL sessionis

running in Virtual Machine mode. Virtual Machine
applications do not provide access to the IDL Command
Line.

New and Enhanced IDL Routines What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 107

MESH_DECIMATE

Keyword or item

Description

PROGRESS_CALLBACK

Set this keyword to a scalar string containing the
name of the IDL function that MESH_DECIMATE
callsat PROGRESS PERCENT intervalsasit
decimates the polygonal mesh.

The PROGRESS CALLBACK function returns a
zeroto signal MESH_DECIMATE to stop
decimating, which causes MESH_DECIMATE to
return the partially decimated mesh. If the callback
function returns anon-zero, MESH_DECIMATE
continues to decimate the mesh.

The PROGRESS_CALLBACK function must
specify asingle argument, Percent, which
MESH_DECIMATE setsto an integer between 0
and 100, inclusive.

The PROGRESS CALLBACK function may
specify an optional USERDATA keyword, which
MESH_DECIMATE setsto the variable provided in
the PROGRESS_USERDATA keyword.

The following code show an example of a progress
callback function:

FUNCTI ON nyProgressCal | back, percent,$
USERDATA = nyStruct

oProgressBar = nyStruct. oProgressBar

; This nethod updates the progress bar
; graphic and returns TRUE if the user has
; NOT pressed the cancel button.
keepCGoi ng = oProgressBar -> $
Updat ePr ogr essVal ue(percent)

RETURN, keepGoi ng

END

What's New in IDL 6.0

New and Enhanced IDL Routines

108

Chapter 1: Overview of New Features in IDL 6.0

Keyword or item

Description

PROGRESS METHOD

Set this keyword to a scalar string containing the
name of afunction method that MESH_DECIMATE
callsat PROGRESS PERCENT intervalsasit
decimates the mesh. If this keyword is set, then the
PROGRESS_OBJECT keyword must be set to an
object reference that is an instance of a class that
defines the specified method.

The PROGRESS _METHOD function method
callback has the same specification as the callback
described in the PROGRESS_CALLBACK
keyword, except that it is defined as an object class
method:

FUNCTI ON nyd ass: : nmyProgressCal | back, $
percent, USERDATA = nyStruct

PROGRESS_OBJECT

Set this keyword to an object reference that is an
instance of aclass that defines the method specified
with the PROGRESS METHOD keyword. If this
keyword is set, then the PROGRESS METHOD
keyword must also be set.

PROGRESS_PERCENT

Set this keyword to a scalar in the range [1, 100] to
specify the interval between invocations of the
callback function. The default valueis5 and IDL
silently clamps other valuesto the range [1, 100].

For example, avalue of 5 (the default) specifies
MESH_DECIMATE will call the callback function
when the decimation is 0% complete, 5% complete,
10% complete, ..., 95% complete, and 100%
complete.

PROGRESS_USERDATA

Set this property to any IDL variable that
MESH_DECIMATE passes to the callback function
in the callback function’s USERDATA keyword
parameter. If this keyword is specified, then the
callback function must be able to accept keyword
parameters.

New and Enhanced IDL Routines

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 109

MESSAGE

Keyword or item

Description

REISSUE_LAST

Set this keyword to reissue the last error issued by IDL. By
using this keyword in conjunction with the CATCH
procedure, your code can catch an error caused by called
code, perform recovery actions, and issue the error
normally.

Note - If this keyword is specified, no plain arguments or
other keywords may be specified. Combining the
REISSUE_LAST keyword with arguments or other
keywords will cause IDL to issue an error.

RESOLVE_ALL

Keyword or item

Description

CLASS

Set this keyword to astring or string array containing object
class names.

RESOLVE_ALL’srulesfor finding uncompiled functions
and procedures are not able to find object definitions or
methods, because those items are not known to IDL until
the object classes are actually instantiated and the methods
called. However, if the CLASS keyword is set,
RESOLVE_ALL will ensurethatthe* __defi ne. profiles
for the specified classes and their superclasses are compiled
and executed. RESOLVE_ALL then locates all methodsfor
the specified classes and their superclasses, and makes sure
they are also compiled.

What's New in IDL 6.0

New and Enhanced IDL Routines

110

SHMMAP

Chapter 1: Overview of New Features in IDL 6.0

Keyword or item

Description

FILENAME

The description of this keyword has been updated with the
following text:

By default, files are mapped as shared, meaning that all
processes that map the file will see any changes made. Al
changes are written back to the file by the operating system
and become permanent. You must have write access to the
filein order to map it as shared.

To change the default behavior, set the PRIVATE keyword.
When afile is mapped privately, changes made to the file
are not written back to the file by the operating system, and
arenot visibleto any other processes. You do not need write
accessto afilein order to map it privately — read accessis
sufficient.

PRIVATE

The description of this keyword has been updated with the
following text:

Mapping afile as shared requires that you have write access
to thefile, but a private mapping requires only read access.
Use PRIVATE to map files for which you do not have write
access, or when you want to ensure that the original file will
not be altered by your process.

STRSPLIT

Keyword or item

Description

COUNT

Set this keyword to a named variable to receive the number
of matched substrings returned by STRSPLIT. Thisvalue
will be 0 in the case where either or both of the String and
Pattern argumentsis NULL. Otherwise, it is the number of
elementsin the result, equivalent to calling the
N_ELEMENTS function.

New and Enhanced IDL Routines

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 111

WIDGET_BUTTON

Keyword or item Description

PUSHBUTTON_EVENTS | Set this keyword to cause button events to be
issued for the widget when the left mouse button is
pressed and released, or when the spacebar is
pressed and released.

Note - This keyword has no effect on exclusive or
non-exclusive buttons.

When this keyword is not set, pressing and
releasing either the left mouse button or the
spacebar (if the button isin focus) generates a
single button event, with the SELECT field set
equal to 1. When this keyword is set:

 Pressing the left mouse button generates a
button event with the SELECT field set equal
to 1.

» Releasing the left mouse button generates a
button event with the SELECT field set equal
to 0.

* Pressing the spacebar generates a button event
with the SELECT field set equal to 1.

» Releasing the spacebar generates a button
event with the SELECT field set equal to 0.

* Pressing and holding the spacebar generates a
series of button events, with the value of the
SELECT field alternating between 1 and 0.
The rate at which events are generated is
governed by the key-repeat settings of the
operating system.

Note - The spacebar only causes a button event if
the button isin focus, which usually implies the
button has been clicked on previoudly.

What's New in IDL 6.0 New and Enhanced IDL Routines

112 Chapter 1: Overview of New Features in IDL 6.0

WIDGET_CONTROL

Keyword or item Description

PUSHBUTTON_EVENTS | This keyword applies to widgets created with the
WIDGET_BUTTON function.

Set this keyword to a non-zero value to enable
pushbutton events for the widget specified by
Wdget_ID. Set the keyword to O to disable
pushbutton events for the specified widget.

REFRESH_PROPERTY This keyword applies to widgets created with the
WIDGET_PROPERTY SHEET function. Set this
keyword to a property identifier or array of property
identifiersto have just those properties synchronized
with their values in the component(s). Recall that
property identifiers are strings that uniquely
determine a property. The keyword can aso be set to
anumeric value — non-zero values refresh all
properties. The REFRESH_PROPERTY keyword
also updates with respect to a property's sensitivity
and visibility.

When all properties need synchronizing, it is more
efficient to use /REFRESH_PROPERTY than
WIDGET_CONTROL's SET_VALUE keyword to
reload the property sheet.

New and Enhanced IDL Routines What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 113

WIDGET _INFO
Keyword or item Description
COMPONENT This keyword applies to widgets created with the

WIDGET_PROPERTY SHEET function. Set this
keyword to an object reference to indicate which
object to query. Thisis most useful when the
property sheet references multiple objects. If this
keyword is not specified, the first (possibly only)
object is queried.

PROPERTY_VALID This keyword applies to widgets created with the
WIDGET_PROPERTY SHEET function. Set this
keyword to a string to determine if the string
identifies a property. Valid identifiersreturn 1 and
invalid strings return 0. Comparisons are case
insensitive.

Operations are performed on properties through
unique identifiers. This operation is not required
when processing a change event because the
identifier returned in the event structure can be
assumed to be correct.

What's New in IDL 6.0 New and Enhanced IDL Routines

114 Chapter 1: Overview of New Features in IDL 6.0

Keyword or item Description

PROPERTY _VALUE This keyword applies to widgets created with the
WIDGET_PROPERTY SHEET function. Retrieves
the value of an identified property from a property
sheet and returns it as atemporary IDL variable.
Set this keyword to astring that isavalid property
identifier to return the value of the specified
property. This value can then be used to set the
actual value of the property — the property sheet
does not automatically do this. When there are
multiple components, use the COMPONENT
keyword to indicate which component should be
queried. The match is case insensitive. An invalid
identifier throws an error.

This keyword is very often used in response to
property sheet change events. Thisis because the
property sheet does not change the underlying
component; it only informs the widget program
which of its own values have changed. The IDL
programmer can use PROPERTY_VALUE to
retrieve the user's desired value (as cached in the
property sheet) and then apply it to the component.
The following snippet of code handles property
sheet change events:

PRO prop_event, e

; get the value of e.conponent's

; property identified by e.identifier

value = WDGET_INFQ(e.id, $
COVPONENT = e. conponent, $
PROPERTY_VALUE = e.identifier)

; set the conponent's property's val ue
e.conponent -> SetPropertyByldentifier, $
e.identifier, value

END

New and Enhanced IDL Routines What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 115

Keyword or item

Description

PUSHBUTTON_EVENTS

This keyword applies to widgets created with the
WIDGET_BUTTON function.

Set this keyword to return the pushbutton events
status for the widget specified by Widget ID.
WIDGET _INFO returns 1 if pushbutton events are
currently enabled for the widget, or O otherwise.

What's New in IDL 6.0

New and Enhanced IDL Routines

116 Chapter 1: Overview of New Features in IDL 6.0

Routines Obsoleted in IDL 6.0

The following routines were present in IDL Version 5.6 but became obsoletein
Version 6.0. These routines have been replaced with a new keyword to an existing
routine or by a new routine that offers enhanced functionality. These obsol eted
routines should not be used in new IDL code.

Routine Replaced By
LIVE_CONTOUR ICONTOUR
LIVE_CONTROL iTools system
LIVE_DESTRQOY iTools system
LIVE_EXPORT iTools system
LIVE_IMAGE IIMAGE
LIVE_INFO iTools system
LIVE LINE iTools system
LIVE LOAD iTools system
LIVE_OPLOT IPLOT
LIVE_PLOT IPLOT
LIVE PRINT iTools system
LIVE_RECT iTools system
LIVE STYLE iTools system
LIVE_SURFACE ISURFACE
LIVE_TEXT iTools system

Routines Obsoleted in IDL 6.0

What's New in IDL 6.0

Chapter 1: Overview of New Features in IDL 6.0 117

Requirements for this Release

IDL 6.0 Requirements

Hardware Requirements for IDL 6.0

The following table describes the supported platforms and operating systems for IDL

6.0:
Platform | Vendor Hardware Ogisr?:rzg S\l;é)rzfor;id
Windows | Microsoft | Intel x86 32-bit Windows NT | [4.0], 2000, XP
Macintosh | Apple G4 32-hit OS Mac OS X 10.2.xt
UNIXT Compag | Alpha 64-hit* True4 UNIX | 5.1
HP PA-RISC 32-bit | HP-UX 11.0
HP PA-RISC 64-bit* | HP-UX 11.0
IBM RS/6000 32-hit AlIX 51
IBM RS/6000 64-bit* | AIX 5.1
Intel Intel x86 32-bit | Linux Red Hat [7.1], 8, 9t
SGl Mips 32-hit IRIX 6.5.1
SGl Mips 64-bit" IRIX 6.5.1
SUN SPARC 32-hit Solaris 2 [8], 9
SUN SPARC 64-hit* Solaris 2 [8],9

Table 1-1: Hardware Requirements for IDL 6.0.

On platforms with both 32-bit and 64-bit support, both versions are installed, and the
64-bit version is the default. The 32-bit version can be run by specifying the - 32
switch at the command line:

%id -32
* The DXF file format and IDL DataMiner are not supported on 64-bit IDL
platforms.

What's New in IDL 6.0 Requirements for this Release

118 Chapter 1: Overview of New Features in IDL 6.0

T For UNIX (including Mac OS X), the supported versions indicate that IDL was
either built on the lowest version listed or tested on that version. You can install and
run IDL on other versions that are binary compatible with those listed.

t1 IDL 6.0 was built on the Linux 2.4 kernel with gl i bc 2.2 using Red Hat Linux
7.1. If your version of Linux is compatible with these, it is possible that you can
install and run IDL on your version.

[1 When multiple supported versions are listed, the bracketed version represents the
operating system used to build IDL. Operating system versions that are binary
compatible with the build version should run IDL 6.0 without problems, but only the
versions listed in the table have been tested by RSI.

Software Requirements for IDL 6.0

The following table describes the software requirements for IDL 6.0:

Platform Software Requirements
Windows Internet Explorer 5.0 or higher.
Macintosh MacOSX X11 which can be obtained at

http://www.apple.com/macosx/x11.

Table 1-2: Software Requirements for IDL 6.0

Requirements for this Release What's New in IDL 6.0

http://www.apple.com/macox/x11

Chapter 1: Overview of New Features in IDL 6.0 119

ION 2.0 Requirements

Hardware Requirements for ION 2.0

Thefollowing table describes the supported platforms and operating systems for ION
20:

Operating Supported

Platform | Vendor Hardware)
System Versions

Windows | Microsoft | Intel x86 32-bit | Windows NT | 4.0, 2000, XP

UNIXT Intel Intel x86 32-bit | Linux Red Hat 7.1, 8, 911
SGl Mips 32-bit IRIX 6.5.1
SUN SPARC 32-hit Solaris 2 8,9

Table 1-3: Hardware Requirements for ION 2.0.

T For UNIX, the supported versions indicate that ION was either built on the lowest
version listed or tested on that version. You can install and run ION on other versions
that are binary compatible with those listed.

T1 ION 2.0 was built on the Linux 2.4 kernel with gl i bc 2.2 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run ION 2.0 on your version.

Web Servers

In order to use ION, you must install an HTTP Web server. ION has been tested with
the following Web server software:
e Apache Web Server version 2.0 or higher for Windows, Linux, and Solaris.

* Apache Web Server version 1.3.14 for IRIX. This version isincluded with the
IRIX operating system.

e Microsoft Internet Information Server (11S) version 5.0 for Windows 2000
Server and version 5.1 for Windows XP Professional.

What's New in IDL 6.0 Requirements for this Release

120 Chapter 1: Overview of New Features in IDL 6.0

If you do not already have Web server software, the IDL 6.0 CD-ROM contains the
following Apache Web Server software:

¢ Windows— Version 2.0.45
e Linux — Version 2.0.43

e Solaris— Version 2.0.43

e |RIX — Version1.3.14

Note
For more information on A pache software for your platform, see
http://www.apache.org.

Web Browsers

ION 2.0 supportsthe HTTP 1.0 protocol. The following are provided as examples of
popular Web browsers that support HTTP 1.0:

¢ Netscape Navigator versions 4.7 and 6.0.
* Microsoft Internet Explorer versions 5.5 and 6.0.

Browsers differ in their support of HTML features. Aswith any Web application, you
should test your ION Script or Java application using Web browsers that anyone
accessing your application is likely to be using.

Java Virtual Machines

ION 2.0 supports the following Java Virtual Machines:
e SunJVM 12 ,13and14
e Microsoft VM 5.x

The following are provided as examples of popular Web browsers that are shipped
with the above JVMs:

¢ Netscape Navigator versions 4.7 and 6.0.
* Microsoft Internet Explorer versions 5.5 and 6.0.

Browsers differ in their support of features. Aswith any Web application, you should
test your ION Java application using Web browsers that anyone accessing your
application is likely to be using.

Requirements for this Release What's New in IDL 6.0

http://www.apache.org

Chapter 2:

New IDL Object
Classes

This chapter provides alist of new object classes introduced in IDL 6.0

List of New ObjectClasses 122

What's New in IDL 6.0 121

122

List of New Object Classes

The following object classes are new in IDL 6.0:

IDLitCommand
IDLitCommandSet
IDLitComponent
IDLitContainer
IDLitData
IDLitDataContainer
IDLitDataOperation
IDLitIMessaging
IDLitManipulator
IDLitManipulatorContainer
IDLitManipulatorM anager
IDLitManipulatorVisual
IDLitOperation
IDLitParameter
IDLitParameterSet
IDLitReader

IDLitTool

IDLitUI
IDLitVisualization
IDLitWindow
IDLitWriter
IDLjavaObject

Chapter 2: New IDL Object Classes

These 22 new object classes contain a combined total of more than 250 methods.
Because of the amount of hew material, the detailed description on these classes and
their properties and methods are provided only in Chapter 7, “iTools Object Classes’
in the IDL Reference Guide manual and the IDL Online Help.

List of New Object Classes

What's New in IDL 6.0

Chapter 3:

New IDL Routines

This chapter describes routines introduced in IDL version 6.0.

ARRAY_INDICES 124
FILE BASENAME 127
FILE DIRNAME 130
ICONTOUR ... 133
IDL_VALIDNAME 156
IDLITSYS CREATETOOL 158
IMAGE o 161
IPLOT .. s 176
ISURFACE0t 194
ITCURRENT ... 213

What's New in IDL 6.0

ITDELETE 215
ITGETCURRENT 217
ITREGISTER oot 219
ITRESET 222
IVOLUME it 224
LOGICAL_AND 245
LOGICAL.OR ...t 247
LOGICAL_TRUE 249
PATH_ CACHE 251
WIDGET_PROPERTYSHEET 258

123

124 Chapter 3: New IDL Routines

ARRAY_INDICES

The ARRAY _INDICES function converts one-dimensional subscripts of an array
into corresponding multi-dimensional subscripts.

Thisroutine iswritten in the IDL language. Its source code can be found in thefile
array_i ndi ces. prointheli b subdirectory of the IDL distribution.

Syntax
Result = ARRAY _INDICES(Array, Index)
Return Value

If Index isascalar, returns a vector containing m dimensional subscripts, where mis
the number of dimensions of Array.

If Index is avector containing n elements, returns an (mx n) array, with each row
containing the multi-dimensional subscripts corresponding to that index.

Arguments

Array
An array of any type.
Index

A scalar or vector containing the one-dimensional subscripts to be converted.
Keywords

None.

ARRAY_INDICES What's New in IDL 6.0

Chapter 3: New IDL Routines

Examples

Example 1

125

This example finds the location of the maximum value of arandom 10 by 10 array:

seed = 111

array = RANDOMJ(seed, 10, 10)

mk = MAX(array, |ocation)

ind = ARRAY_I NDI CES(array, |ocation)

PRINT, ind, array[ind[O],ind[1]], $
FORMAT = ' (% Value at [%, %] is %")'

IDL prints:
Value at [3, 6] is 0.973381

Example 2

This example routine locates the highest point in the example Maroon Bells data set

and places aflag at that point.

Enter the following code in the IDL editor:
PRO ExARRAY_| NDI CES

I mport Maroon Bells data.

file = FILEPATH(' surface.dat', $
SUBDI RECTORY = ['exanples', 'data'])

data = READ BI NARY(file, DATA DI MS = [350, 450],
DATA TYPE = 2)

Di spl ay dat a.
| SURFACE, data

; Cal cul ate the val ue and one-di nensi onal
; array location of the highest point.
maxVal ue = MAX(data, nmaxPoint)

; Using ARRAY_INDICES to convert the one-

; dinensional array location to a two-

; dinensional aray |ocation.

maxLocati on = ARRAY_I NDI CES(dat a, maxPoi nt)

Print the results.
PRI NT, ' Highest Point Location: ', maxLocation
PRI NT, ' Highest Point Value: ', naxVal ue

; Create flag for the highest point.

What's New in IDL 6.0

$

ARRAY_INDICES

126 Chapter 3: New IDL Routines

X maxLocat i on[0]

y maxLocat i on[1]

z = maxVal ue

xFlag = [x, x, x + 50., X]

yFlag = [y, y, y + 50., V]

zFlag = [z, z + 1000., z + 750., z + 500.]

Display flag at the highest point.
| PLOT, xFlag, yFlag, zFlag, /OVERPLOT

END

Save the code as EXARRAY_| NDI CES. pr o, compileit and run it. The following
figure displays the output of this example:

Figure 3-1: Maroon Bells Surface Plot with Flag at Highest Point Before Rotation
(Left) and After Rotation (Right)

For a better view of the flag, use the Rotate tool to rotate the surface.
Version History

Introduced: 6.0
See Also

MAX, MIN, WHERE

ARRAY_INDICES What's New in IDL 6.0

Chapter 3: New IDL Routines 127

FILE_BASENAME

The FILE_BASENAME function returns the basename of afile path. A file pathisa
string containing one or more segments consisting of names separated by directory
delimiter characters (slash (/) under UNIX, or backslash (\) under Microsoft
Windows). The basenameisthefinal rightmost segment of the file path; itisusually a
file, but can also be adirectory name. See “Rules used by FILE_ BASENAME” on
page 128 for additional information.

Note
FILE_BASENAME operates on strings based strictly on their syntax. The Path
argument need not refer to actual or existing files.

FILE_BASENAME is based on the standard UNIX basenane(1) utility.

Note
To retrieve the leftmost portion of the file path (the dirname), use the
FILE_DIRNAME function.

Syntax
Result = FILE_BASENAME(Path [, RemoveSuffix] [, /FOLD_CASE])

Return Value

A scalar string or string array containing the basename for each element of the Path
argument.

Arguments

Path

A scalar string or string array containing paths for which the basename is desired.

Note
Under Microsoft Windows, the backslash (\) character is used to separate
directories within a path. For compatibility with UNIX, and general convenience,
the forward slash (/) character is also accepted as a directory separator in the Path
argument.

What's New in IDL 6.0 FILE_BASENAME

128 Chapter 3: New IDL Routines

RemoveSuffix

An optional scalar string or 1-element string array specifying a filename suffix to be
removed from the end of the basename, if present.

Note
If the entire basename string matches the suffix, the suffix is not removed.

Keywords
FOLD_CASE

By default, FILE_BASENAME follows the case sensitivity policy of the underlying
operating system when attempting to match a string specified by the RemoveSuffix
argument. By default, matches are case sensitive on UNIX platforms, and case
insensitive on Microsoft Windows platforms. The FOLD_CASE keyword is used to
change this behavior. Set it to anon-zero value to cause FILE_ BASENAME to do all
string matching case insensitively. Explicitly set FOLD_CASE equal to zero to cause
all string matching to be case sensitive.

Note
The value of the FOLD_CASE keyword isignored if the RemoveSuffix argument is
not present.

Rules used by FILE_ BASENAME

FILE BASENAME makesacopy of the input file path string, then modifies the copy
according to the following rules:

e If PathisaNULL string, then FILE_BASENAME returnsa NULL string.

e If Path consists entirely of directory delimiter characters, the result of
FILE_ BASENAME isasingle directory delimiter character.

« If thereare any trailing directory delimiter characters, they are removed.
e Under Microsoft Windows, remove any of the following, if present:

e Thedriveletter and colon (for file paths of the form
c:\directory\file).

e Theinitia double-backsash and host name (for UNC file paths of the
form\\ host\share\directory\file).

FILE_BASENAME What's New in IDL 6.0

Chapter 3: New IDL Routines 129

e If any directory delimiter characters remain, al characters up to and including
the last directory delimiter are removed.

¢ |f the RemoveSuffix argument is present, is not identical to the characters
remaining, and matches the suffix of the characters remaining, the suffix is
removed. Otherwise, the Result is not modified by this step. The case
sensitivity of the string comparison used in this step is controlled by the
FOLD_CASE keyword.

Examples

The following command prints the basename of an IDL . pr o file, removing the
. pr o suffix:

PRI NT, FILE BASENAME('/usr/local/rsi/idl/lib/dist.pro', '.pro')
IDL prints:
di st

Similarly, the following command prints the basenames of al . pr o filesinthel i b
subdirectory of the IDL distribution that begin with the letter “I,” performing a case
insensitive match for the suffix:

PRI NT, FI LE_BASENAME(FI LE_SEARCH(FI LEPATH('lib")+ /i*.pro'),
".pro', /FOLD_CASE)

Version History
Introduced: 6.0

See Also

FILE_DIRNAME, PATH_SEP, STREGEX, STRMID, STRPOS, STRSPLIT

What's New in IDL 6.0 FILE_BASENAME

130 Chapter 3: New IDL Routines

FILE_DIRNAME

The FILE_DIRNAME function returns the dirname of afile path. A file pathisa
string containing one or more segments consisting of names separated by directory
delimiter characters (slash (/) under UNIX, or backslash (\) under Microsoft
Windows). The dirnameis all of the file path except for the final rightmost segment,
which isusually afile name, but can also be a directory name. See “Rules use by
FILE_DIRNAME”" on page 131 for additional information.

Note
FILE_DIRNAME operates on strings based strictly on their syntax. The Path
argument need not refer to actual or existing files.

FILE DIRNAME is based on the standard Unix di r name(1) utility.

Note
To retrieve the rightmost portion of the file path (the basename), use the
FILE_BASENAME function.

Syntax
Result = FILE_DIRNAME(Path [, /MARK_DIRECTORY])
Return Value

A scalar string or string array containing the dirname for each element of the Path
argument.

Note
By default, the dirname does not include a final directory separator character; this
behavior can be changed using the MARK_DIRECTORY keyword.

Note
On Windows platforms, the string returned by FILE_DIRNAME always uses the
backslash (\) asthe directory separator character, even if the slash (/) wasused in
the Path argument.

FILE_DIRNAME What's New in IDL 6.0

Chapter 3: New IDL Routines 131

Arguments

Path

A scalar string or string array containing paths for which the dirname is desired.

Note
Under Microsoft Windows, the backslash (\) character is used to separate
directories within a path. For compatibility with UNIX, and general convenience,
the forward slash (/) character is also accepted as a directory separator in the Path
argument. However, al results produced by FILE_DIRNAME on Windows
platforms use the standard backslash for this purpose, regardless of the separator
character used in the input Path argument.

Keywords
MARK_DIRECTORY

Set this keyword to include a directory separator character at the end of the returned
directory name string. Including the directory character allows you to concatenate a
file name to the end of the directory name string without having to supply the
separator character manually. Thisis convenient for cross platform programming, as
the separator characters differ between operating systems.

Rules use by FILE_ DIRNAME

FILE_DIRNAME makes a copy of the input path string, and then modifies the copy
according to the following rules:

e If PathisaNULL string, then FILE_DIRNAME returns asingle dot (.)
character, representing the current working directory of the IDL process.

e Under Microsoft Windows, afile path can start with either of the following:

e A driveletter and a colon (for file paths of the form
c:\directory\file).

¢ Aninitial double-backdash and a host name (for UNC file paths of the
form\\ host\share\directory\file).

If either of these are present in Path, they are considered to be part of the
dirname, and are copied to the result without interpretation by the remaining
steps below.

What's New in IDL 6.0 FILE_DIRNAME

132

Chapter 3: New IDL Routines

e If Path consists entirely of directory delimiter characters, the result of
FILE_ DIRNAME isasingle directory delimiter character (prefixed by a
Windows drive letter and colon or a UNC prefix, if necessary).

* All charactersto theright of the rightmost directory delimiter character are
removed.

» All trailing directory delimiter characters are removed.

« If the MARK_DIRECTORY keyword is set, asingle directory delimiter
character is appended to the end.

Examples

The following statements print the directory in which IDL locatesthefiledi st . pro
when it needs a definition for the DIST function. (DIST is part of the standard IDL
user library, included with IDL):

tenp = DIST(4) ; Ensure that DI ST is conpil ed
PRI NT, FILE DI RNAVE((ROUTINE_INFQ('DI ST, $
/ FUNCTI ON, / SCOURE)) . pat h)

Depending on the platform and location where IDL isinstalled, IDL prints something
like:

fusr/local/rsi/idl/lib

Version History

Introduced: 6.0

See Also

FILE_BASENAME, PATH_SEP, STREGEX, STRMID, STRPOS, STRSPLIT

FILE_DIRNAME What's New in IDL 6.0

Chapter 3: New IDL Routines 133

ICONTOUR

The ICONTOUR procedure creates an i Tool and associated user interface (Ul)
configured to display and manipulate contour data.

Note
If no arguments are specified, the ICONTOUR procedure creates an empty Contour

tool.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
i contour.prointhelib/itools subdirectory of the IDL distribution.

Using Palettes

Contour colors can be specified in several ways. By default, al contour levels are
black. The COLOR keyword can be used to change the color of all contour levels.
For example, you can change contour levelsto red by setting COLOR = [255, 0, 0].
Individual color levels can be specified when the iContour tool isin palette color
mode, which allows a color table to be used. You can activate the palette color mode
from the IDL Command Line by setting either of the RGB_TABLE or
RGB_INDICES keywords, or from the iContour tool’s property sheet by changing
the Use palette color setting to Tr ue.

Note
If you are not in the pal ette color mode, the colors of individual levels may be

modified in the contour level properties dialog. If you are in the palette color mode,
the ability to edit individual colorsin the contour level propertiesdialog is disabled.
However, changing the Use palette color setting to Fal se does not switch you
back to previously set colors. It simply converts the colors referenced by indicesto
direct color values that can be individually modified. A common practiceisto
switch to palette color mode, select a palette, then change Use palette color to

Fal se. The colors of the palette are now loaded as individual contour colors that
can each be edited in the contour level properties dialog.

If the iContour tool isin palette color mode, a colorbar can be inserted through the
Insert menu. The colorbar displays a sample of the current pal ette associated with
the contour display. The data values of the axis of the colorbar are based on the data
range of the Z argument and the contour level values.

What's New in IDL 6.0 ICONTOUR

134

Chapter 3: New IDL Routines

The minimum value of the colorbar axis represents the minimum of the data range.
The maximum value of the axisis the greater of than the maximum of the data range
and the highest contour level value.

Note
When IDL computes default contour levels, the highest contour level may be above
the maximum value of the data.

Syntax

ICONTOUR

ICONTOURY, Z][, X, Y]]

iTool Common Keywords:. [, DIMENSIONS=[X, y]] [, IDENTIFIER=variabl€]

[, LOCATION=[X, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X]Y | Z} RANGE=[min, max]]

iTool Contour Keywords: [, RGB_INDICES=vector of indices]
[, RGB_TABLE=byte array of 256 by 3 or 3 by 256 elements] [, ZVALUE=valug]

Contour Object Keywords:. [, AM_PM=vector of two strings]

[, ANISOTROPY =[x, V, Z]] [, C_COLOR=color array]

[, C_FILL_PATTERN=array of IDLgrPattern objects]

[, C_ LABEL_INTERVAL=vector] [, C_LABEL_NOGAPS=vector]

[, C_LABEL_OBJECTS=array of object references]

[, C_LABEL_SHOW=vector of integers] [, C_LINESTYLE=array of linestyles]

[, C_THICK=float array{ each element 1.0 to 10.0}]

[, C_USE_LABEL_COLOR=vector of values]|

[, C_USE_LABEL_ORIENTATION=vector of values]

[, C_VALUE=scalar or vector] [, CLIP_PLANES=array] [, COLOR=RGB vector]
[, DAYS_OF WEEK=vector of seven strings| [, DEPTH_OFFSET=value]
[,/DOWNHILL] [, /FILL] [, /HIDE] [, LABEL_FONT=0bjref]

[, LABEL_FORMAT=string] [, LABEL_FRMTDATA=value]

[, LABEL_UNITS=string] [, MAX_VALUE=value] [, MIN_VALUE=value]

[, MONTHS=vector of 12 values] [, N_LEVELS=value] [, /PLANAR]

[, SHADE_RANGE=[min, max]] [, SHADING={0 |1}] [, TICKINTERVAL=valug]
[, TICKLEN=value] [, USE_TEXT_ALIGNMENTS=value]

What's New in IDL 6.0

Chapter 3: New IDL Routines 135

Axis Object Keywords: [, {X |Y | Z}GRIDSTYLE={0|1|2|3|4|5]6}]
L{X]Y |Z}MAJOR=integer] [, {X | Y | Z} MINOR=integer]

[,{X|Y |Z}SUBTICKLEN=ratio] [, {X |Y | Z} TEXT_COLOR=RGB vector]
[L{X]|Y |Z}TICKFONT_INDEX={0|1]2]|3]|4}]

[,{X|Y | Z} TICKFONT_SIZE=integer]

[{X|Y |Z}TICKFONT_STYLE={0]|1]|2|3}]

[{X]|Y |Z} TICKFORMAT=string or string array]

[L{X]|Y |Z}TICKINTERVAL=value] [,{X | Y | Z} TICKLAYOUT={0| 1] 2}]
[,{X|Y |Z}TICKLEN=value] [, {X | Y | Z} TICKNAME-=string array]
[,{X]|Y |Z}TICKUNITS=string] [, {X | Y | Z} TICKVALUES=vector]
[,{X|Y | Z} TITLE=string]

Arguments

X

A vector or two-dimensional array specifying the x-coordinates for the contour
surface. If X isavector, each element of X specifies the x-coordinate for a column of
Z (e.g., X[Q] specifiesthe x-coordinate for Z[0, *]). If X isatwo-dimensional array,
each element of X specifies the x-coordinate of the corresponding point in Z (i.e., X;;
specifies the x-coordinate for Z;).

A vector or two-dimensional array specifying the y-coordinates for the contour
surface. If Y isavector, each element of Y specifies the y-coordinate for arow of Z
(e.0., Y[Q] specifiesthey-coordinate for Z[*,0]). If Y isatwo-dimensional array, each
element of Y specifies the y-coordinate of the corresponding point in Z (j; specifies
the y-coordinate for Z;).

A vector or two-dimensional array containing the valuesto be contoured. If the X and
Y arguments are provided, the contour is plotted as a function of the (x, y) locations
specified by their contents. Otherwise, the contour is generated as a function of the
two-dimensional array index of each element of Z.

What's New in IDL 6.0 ICONTOUR

136 Chapter 3: New IDL Routines

Keywords

Note
Because keywords to the ICONTOUR routine correspond to the names of
registered properties of the iContour tool, the keyword names must be specified in
full, without abbreviation.

AM_PM

Set this keyword to a vector of 2 strings indicating the names of the AM and PM
strings when processing explicitly formatted dates (CAPA, CApA, and CapA format
codes) with the LABEL_FORMAT keyword. See “Format Codes’ in Chapter 10 of
the Building IDL Applications manual for more information on format codes.

ANISOTROPY

Set this keyword equal to a three-element vector [x, v, Z] that represents the
multipliersto be applied to theinternally computed correction factors along each axis
that account for anisotropic geometry. Correcting for anisotropy is particularly
important for the appropriate representations of downhill tickmarks.

By default, IDL will automatically compute correction factors for anisotropy based
on the [XY Z] range of the contour geometry. If the geometry (as provided viathe
GEOMX, GEOMY, and GEOMZ keywords) fallswithin the range [xmin, ymin, zmin]
to [xmax, ymax, zmax], then the default correction factors are computed as follows:

dx = xmax - xmn
dy = ymax - ymn
dz = zmax - znmin

; Get the maxi mum of the ranges:

maxRange = (dx > dy) > dz

IF (dx EQ 0) THEN xcorrection = 1.0 ELSE $
xcorrection = maxRange / dx

IF (dy EQ 0) THEN ycorrection = 1.0 ELSE $
ycorrection = maxRange / dy

IF (dz EQ 0) THEN zcorrection = 1.0 ELSE $
zcorrection = maxRange / dz

Thisinternally computed correction is then multiplied by the corresponding [X, V, Z]
values of the ANISOTROPY keyword. The default value for this keyword is[1,1,1].
IDL converts, maintains, and returns this data as double-precision floating-point.

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 137

C_COLOR

Set this keyword to a3 by N array of RGB colors representing the colors to be
applied at each contour level. If there are more contour levels than elementsin this
vector, the colors will be cyclicaly repeated. If C COLOR isset to 0, all contour
levels will be drawn in the color specified by the COLOR keyword (thisisthe
default).

However, the C_COLOR keyword does not activate the palette color mode, which is
recommended when working with contour levels and color. This mode can be
activated with the RGB_INDICES and RGB_TABLE keywords. See “Using
Palettes” on page 133 for more details.

C_FILL_PATTERN

Set this keyword to an array of IDLgrPattern objects representing the patterns to be
applied at each contour level if the FILL keyword is non-zero. If there are more
contour levels than fill patterns, the patterns will be cyclically repeated. If this
keyword is set to O, all contour levels arefilled with asolid color (thisis the default).

C_LABEL_INTERVAL

Set this keyword to avector of values indicating the distance (measured
parametrically relative to the length of each contour path) between labels for each
contour level. If the number of contour levels exceeds the number of provided
intervals, the C_LABEL_INTERVAL vaueswill be repeated cyclically. The default
is0.4.

C_LABEL_NOGAPS

Set this keyword to avector of values indicating whether gaps should be computed
for the labels at the corresponding contour value. A zero valueindicates that gapswill
be computed for |abels at that contour value; a non-zero value indicates that no gaps
will be computed for labels at that contour value. If the number of contour levels
exceeds the number of elementsin this vector, the C_LABEL_NOGAPS values will
be repeated cyclically. By default, gaps for the labels are computed for al levels (so
that a contour line does not pass through the label).

What's New in IDL 6.0 ICONTOUR

138

Chapter 3: New IDL Routines

C_LABEL_OBJECTS

Set this keyword to an array of object references to provide examples of labelsto be
drawn for each contour level. The objects specified viathis keyword must inherit
from one of the following classes.

e IDLgrSymbol
* |DLgrText

If asingle object is provided, and it isan IDLgrText object, each of its strings will
correspond to a contour level. If avector of objectsis used, any IDLgrText objects
should have only asingle string; each object will correspond to a contour level.

By default, with C_LABEL_OBJECTS set equal to anull object, IDL computes text
labels that are the string representations of the corresponding contour level values.

Note
The objects specified via this keyword are used as descriptors only. The actual
objects drawn as labels are generated by IDL.

The contour labels will have the same color as their contour level (see C_COLOR)
unlessthe C_ USE LABEL_COLOR keyword is specified. The orientation of the
label will be automatically computed unlessthe C_ USE_LABEL_ORIENTATION
keyword is specified. The horizontal and vertical alignment of any text labels will
default to 0.5 (i.e., centered) unlessthe USE TEXT_ALIGNMENTS keyword is
specified.

Note
The object(s) set viathis keyword will not be destroyed automatically when the
contour is destroyed.

C_LABEL_SHOW

ICONTOUR

Set this keyword to a vector of integers. For each contour value, if the corresponding
valueinthe C_LABEL_SHOW vector is non-zero, the contour line for that contour
valuewill belabeled. If the number of contour levels exceeds the number of elements
in this vector, the C_LABEL_SHOW values will be repeated cyclically. The default
is 0 indicating that no contour levels will be labeled.

What's New in IDL 6.0

Chapter 3: New IDL Routines 139

C_LINESTYLE

Set this keyword to an array of linestyles representing the linestyles to be applied at
each contour level. The array may be either a vector of integers representing pre-
defined linestyles, or an array of 2-element vectors representing a stippling pattern
specification. If there are more contour levels than linestyles, the linestyles will be
cyclically repeated. If thiskeyword is set to O, al levels are drawn as solid lines (this
isthe default).

To use a pre-defined line style, set the C_LINESTY LE property equal to one of the
following integer values.

« 0= Solid line (the default)

e 1=dotted

e 2=dashed

e 3=dashdot

e 4 =dash dot dot dot
¢ 5=longdash

¢ 6=nolinedrawn

To define your own stippling pattern, specify atwo-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1'sor 0'sin the
bitmask should be repeated. (That is, if three consecutive 0's appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 < repeat < 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LI NESTYLE = [2, ' FOFO' X] describesadashed line (8 bitson, 8
bits off, 8 bits on, 8 hits off).

C_THICK

Set this keyword to an array of line thicknesses representing the thickness to be
applied at each contour level, where each element is a value between 1.0 and 10.0
points. If there are more contour levels than line thicknesses, the thicknesses will be
cyclicaly repeated. If thiskeyword is set to O, all contour levels are drawn with aline
thickness of 1.0 points (thisis the default).

What's New in IDL 6.0 ICONTOUR

140 Chapter 3: New IDL Routines

C_USE_LABEL_COLOR

Set this keyword to avector of values (0 or 1) to indicate whether the COLOR
property value for each of the label objects (for the corresponding contour level) isto
be used to draw that 1abel. If the number of contour levels exceeds the number of
elementsin this vector, the C_USE_L ABEL_COLOR vaueswill be repeated
cyclically. By default, thisvalueis zero, indicating that the COLOR properties of the
label objectswill beignored, and the C_COL OR property for the contour object will
be used instead.

C_USE_LABEL_ORIENTATION

Set this keyword to a vector of values (0 or 1) to indicate whether the orientation for
each of the label objects (for the corresponding contour level) is to be used when
drawing the label. For text, the orientation of the object correspondsto the
BASELINE and UPDIR property values; for asymbol, this refersto the default (un-
rotated) orientation of the symbol. If the number of contour levels exceeds the
number of elementsin this vector, the C USE LABEL_ORIENTATION values will
be repeated cyclically. By default, thisvalue is zero, indicating that orientation of the
label object(s) will be set to automatically computed values (to correspond to the
direction of the contour paths).

C_VALUE

Set this keyword to a scalar value or avector of valuesfor which contour values are to
be drawn. If this keyword is set to O, contour levelswill be evenly sampled across the
range of the Z argument, using the value of the N_L EVEL S keyword to determine the
number of samples. IDL converts, maintains, and returns this data as double-
precision floating-point.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this abject. The four coefficients for each clipping
plane are of theform [A, B, C, D], where Ax + By + Cz+ D = 0. Portions of this
object that fall in the half space Ax + By + Cz+ D > 0 will be clipped. By default, the
value of this keyword isascalar (-1) indicating that no clipping planes are to be

applied.
Note

A window isonly able to support alimited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 141

display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to the color to be used to draw the contours. This color is specified
as an RGB vector. The default is [0, 0, 0]. This value will be ignored if the
C _COLOR keyword is set to a vector.

DAYS_OF_WEEK

Set this keyword to avector of 7 strings to indicate the names to be used for the days
of the week when processing explicitly formatted dates (CDWA, CDwWA, and CdwA
format codes) with the LABEL_FORMAT keyword. See “Format Codes’ in Chapter
10 of the Building IDL Applications manual for more information on format codes.

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in units specified by the UNITS
keyword. If no value is provided, a default value of one half the screen size is used.
The minimum width of the window correlates to the width of the menubar. The
minimum window height is 100 pixels.

DOWNHILL

Set this keyword to indicate that downhill tick marks should be rendered as part of
each contour level to indicate the downhill direction relative to the contour line.

FILL

Set this keyword to indicate that the contours should be filled. The default is to draw
the contour levels as lines without filling. Filling contours may produce less than
satisfactory results if your data contains NaNs, or if the contours are not closed.

HIDE

Set this keyword to a boolean value to indicate whether this object should be drawn:
e 0= Draw graphic (the default)
e 1=Donot draw graphic

What's New in IDL 6.0 ICONTOUR

142 Chapter 3: New IDL Routines

IDENTIFIER

Set this keyword to a named variable that will contain the iToolID for the created
tool. This value can then be used to reference thistool during overplotting operations
or command-line-based tool management operations.

LABEL_FONT

Set this keyword to an instance of an IDLgrFont object to describe the default font to
be used for contour labels. Thisfont will be used for al text labels automatically
generated by IDL (i.e., if C LABEL_SHOW is set but the corresponding

C _LABEL_OBJECTStext object is not provided), or for any text label objects
provided viaC_LABEL_OBJECTS that do not already have the font property set.
The default value for this keyword isaNULL object reference, indicating that 12 pt.
Helveticawill be used.

LABEL_FORMAT

Set this keyword to a string that represents aformat string or the name of afunction
to be used to format the contour labels. If the string begins with an open parenthesis,
it istreated as a standard format string. (Refer to the Format Codesin the IDL
Reference Guide.) If the string does not begin with an open parenthesis, it is
interpreted as the name of a callback function to be used to generate contour level
labels.

The callback function is called with three parameters: Axis, Index, and Value and an
optional DATA keyword, where:

« Axisissimply the value 2 to indicate that values along the Z axis are being
formatted, which allows a single callback routine to be used for both axis
labeling and contour labeling.

¢ Indexisthe contour level index (indices start at 0).
* \alueisthe data value of the current contour level.

« DATA isthe optional keyword allowing any user-defined value specified
through the LABEL_FRMTDATA keyword to ICONTOUR.

LABEL_FRMTDATA

Set this keyword to avalue of any type. It will be passed viathe DATA keyword to
the user-supplied formatting function specified viathe LABEL_FORMAT keyword,
if any. By default, thisvalueis O, indicating that the DATA keyword will not be set
(and furthermore, need not be supported by the user-supplied function).

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 143

LABEL_UNITS

Set this keyword to a string indicating the units to be used for default contour level
labeling.

Valid unit strings include:

¢ "Numeric"
* "Years'
"Months'
* "Days'

* "Hours'

e "Minutes'
» "Seconds'

« "Time" - Usethisvalueto indicate that the contour levels correspond to time
values; IDL will determine the appropriate label format based upon the range
of values covered by the contour Z data.

. - The empty string is equivalent to the "Numeric" unit. Thisis the default.

If any of the time units are utilized, then the contour values are interpreted as Julian
date/time values.

Note
The singular form of each of the time unit stringsis also acceptable (for example,
LEVEL_UNITS='Day' isequivalent to LEVEL_UNITS="Days).

LOCATION

Set this keyword to a two-element vector of the form [, y] to specify the location of
the upper left-hand corner of thetool relative to the display screen, in units specified
by the UNITS keyword.

MAX_VALUE

Set this keyword to the maximum value to be plotted. Data values greater than this
value are treated as missing data. The default is the maximum value of the input Z
data. IDL converts, maintains, and returns this data as doubl e-precision floating-
point.

What's New in IDL 6.0 ICONTOUR

144 Chapter 3: New IDL Routines

MONTHS

Set this keyword to a vector of 12 strings indicating the names to be used for the
months when processing explicitly formatted dates (CMOA, CMoA, and CmoA
format codes) with the C_LABEL_FORMAT keyword. See “Format Codes’ in
Chapter 10 of the Building IDL Applications manual for more information on format
codes.

MIN_VALUE

Set this keyword to the minimum value to be plotted. Data values less than this value
aretreated as missing data. The default isthe minimum value of the input Z data. IDL
converts, maintains, and returns this data as doubl e-precision floating-paint.

NAME

Set this keyword to a string that specifies the name of this visualization.
N LEVELS

Set this keyword to the number of contour levelsto generate. This keyword isignored
if the C_VALUE keyword is set to a vector, in which case, the number of levelsis
derived from the number of elements in that vector. Set this keyword to zero to
indicate that IDL should compute a default number of levels based on the range of
data values. Thisisthe default.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iTool ID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, anew tool is created.

PLANAR

Set this keyword to indicate that the contoured datais to be projected onto a plane.
Unlike the underlying IDLgrContour object, the default for ICONTOUR is planar
(PLANAR = 1), which displays the contoured datain a plane. See the ZVALUE
keyword to specify the Z value at which to display the planar Contour plot if it is
displayed in athree dimensiona data space.

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 145

RGB_INDICES

Set this keyword to avector of indicesinto the color table to select colorsto use for
contour level colors. Setting the RGB_INDICES keyword activates the pal ette color
mode, which allows colors from a specified color table to be used for the contour
levels. The values set for RGB_INDICES are indices into the RGB_TABLE array of
colors. If the number of colors selected using RGB_INDICES is less than the number
of contour levels, the colors are repeated cyclically. If indices are not specified with
the RGB_INDICES keyword, a default vector is constructed based on the values of
the contour levels within the contour data range scaled to the byte range of
RGB_TABLE.

See “Using Palettes” on page 133 for more details on the pal ette color mode.
RGB_TABLE

Set this keyword to either a3 by 256 or 256 by 3 array containing color values to use
for contour level colors. Setting the RGB_TABLE keyword activates the palette color
mode, which allows colors from a specified color table to be used for the contour
levels. The colors for each level are selected from RGB_TABLE using the
RGB_INDICES vector. If indices are not specified with the RGB_INDICES keyword
then a default vector is constructed based on the values of the contour levels within
the contour data range scaled to the byte range of RGB_TABLE.

If the visualization isin palette color mode, but colors have not been specified with
the RGB_TABLE keyword, the contour plot uses a default grayscale ramp.

See “Using Palettes” on page 133 for more details on the pal ette color mode.
SHADE_RANGE

Set this keyword to atwo-element array that specifies the range of pixel values (color
indices) to use for shading. The first element is the color index for the darkest pixel.
The second element is the color index for the brightest pixel. This valueisignored
when the contour is drawn to a graphics destination that uses the RGB color model.

SHADING
Set this keyword to an integer representing the type of shading to use:

e 0=Flat (default): The color has a constant intensity for each face of the
contour, based on the normal vector.

e 1= Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

What's New in IDL 6.0 ICONTOUR

146

Chapter 3: New IDL Routines

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

TICKINTERVAL

Set this keyword equal to a number indicating the distance between downhill
tickmarks, in data units. If TICKINTERVAL isnot set, or if you explicitly set it to
zero, IDL will compute the distance based on the geometry of the contour. IDL
converts, maintains, and returns this data as double-precision floating-point.

TICKLEN

Set this keyword equal to a number indicating the length of the downhill tickmarks,
in dataunits. If TICKLEN isnot set, or if you explicitly set it to zero, IDL will
compute the length based on the geometry of the contour. IDL converts, maintains,
and returns this data as doubl e-precision floating-point

TITLE

Set this keyword to a string to specify atitle for the tool. Thetitle is displayed in the
title bar of the tool and is used for tool-related display purposes only — as the root of
the hierarchy shown in the Tool Browser, for example.

USE_TEXT_ALIGNMENTS

Set this keyword to indicate that, for any IDLgrText labels (as specified viathe

C _LABEL_OBJECTS keyword), the ALIGNMENT and
VERTICAL_ALIGNMENT property values for the given IDLgrText object(s) are to
be used to draw the corresponding labels. By default, thisvalue is zero, indicating
that the ALIGNMENT and VERTICAL_ALIGNMENT properties of the label
IDLgrText object(s) will be set to default values (0.5 for each, indicating centered
labels).

VIEW_GRID

ICONTOUR

Set this keyword to atwo-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword isonly used if anew tool isbeing
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID isignored).

What's New in IDL 6.0

Chapter 3: New IDL Routines 147

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view isthe last onein the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

[XYZ]MAJOR

Set this keyword to an integer representing the number of magjor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely. ZMAJOR isignored
unlessPLANAR isset to O.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely. ZMINOR isignored
unlessPLANAR isset to O.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum. ZRANGE isignored
unless PLANAR isset to 0.

What's New in IDL 6.0 ICONTOUR

148 Chapter 3: New IDL Routines

[XYZ]SUBTICKLEN

Set this keyword to afloating-point scale ratio specifying the length of minor tick
marks relative to the length of mgjor tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark. ZSUBTICKLEN is
ignored unless PLANAR isset to 0.

[XYZ]JTEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
valueis[0, 0, Q] (black). ZTEXT_COLOR isignored unlessPLANAR isset to 0.

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

e 0=Helvetica
e 1=Courier
e 2=Times
¢ 3=Symbol
e 4 =Hershey
ZTICKFONT _INDEX isignored unless PLANAR isset to 0.

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. Thedefaultis 12.0 points. ZTICKFONT_SIZE isignored unlessPLANAR is set
toO.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

¢« 0=Normd
« 1=Bold
« 2=ltdic

 3=Boldltdic
ZTICKFONT_STYLE isignored unlessPLANAR isset to 0.

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 149

[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of afunction to be used to format the tick mark labels. If an
array is provided, each string corresponds to alevel of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it isinterpreted as the name of a
callback function to be used to generate tick mark |abels.

If TICKUNITS are not specified:

e Thecallback function is called with three parameters: Axis, Index, and Value,
where:

« Axisisthe axis number: O for X axis, 1 for Y axis, 2 for Z axis
¢ Indexisthetick mark index (indices start at 0)

¢ Valueisthe data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

*« AXxis, Index, and Value are the same as described above.

* Level istheindex of the axislevel for the current tick value to be labeled.
(Level indicesstart at 0.)

Used with the LABEL _DATE function, this property can easily create axes with
date/time labels.

ZTICKFORMAT isignored unless PLANAR isset to O.
[XYZ]TICKINTERVAL

Set this keyword to afloating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XY Z][MAJOR). The value of
this keyword takes precedence over the value set for the [XY Z][MAJOR keyword.

What's New in IDL 6.0 ICONTOUR

150 Chapter 3: New IDL Routines

For example, if TICKUNITS=['S, 'H', 'D], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

ZTICKINTERVAL isignored unless PLANAR isset to 0.
[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

e 0=Theaxisline, mgor tick marks and tick labels are all included. Minor tick
marks only appear on the first level of the axis. Thisis the default tick layout
style.

e 1=0nly thelabelsfor the major tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

e 2=Eachmajor tick interval isoutlined by abox. Thetick labels are positioned
within that box (left-aligned). For the first axislevel only, the major and minor
tick marks will also be drawn.

ZTICKLAYOUT isignored unless PLANAR isset to 0.

Note
For al tick layout styles, at |east one tick label will appear on each level of the axis

(even if no mgjor tick marks fall along the axisline). If there are no major tick
marks, the singletick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each mgjor tick
mark, measured in data units. The recommended, and default, tick mark length is0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.
ZTICKLEN isignored unless PLANAR is set to O.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark. ZTICKNAME isignored unless PLANAR isset to 0.

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 151

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axistick labeling. If more than one unit is provided, the axiswill be drawnin multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axisline).

Valid unit strings include:

¢ "Numeric"
* "Years'

* "Months'
* "Days'

e "Hours'

e "Minutes'
e "Seconds"

« "Time" - Usethisvalue to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

e ""-Usethe empty string to indicate that no tick units are being explicitly set.
Thisimpliesthat asingle axis level will be drawn using the "Numeric" unit.
Thisisthe default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value stringsis also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS ='Days).

ZTICKUNITS isignored unless PLANAR isset to 0.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

What's New in IDL 6.0 ICONTOUR

152 Chapter 3: New IDL Routines

[XYZ]TICKVALUES

Set this keyword to afloating-point vector of data values representing the values at
each tick mark. If TICKVALUES s set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point. ZTICKVALUES
isignored unlessPLANAR is set to O.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis. ZTITLE is
ignored unless PLANAR isset to 0.

ZVALUE

For aplanar contour plot, the height of the Z plane onto which the contour plot is
projected.

Note
This keyword will not have any visual effect unless PLANAR istrue and the plot is
in a 3D dataspace, for example by selecting the Surface operation to add a surface
plot to the dataspace along with the contour plot.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported viathe File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data viathe iTool file menu, refer to “ Data Import Methods’ in Chapter 2
of theiTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to bring contour data into
the iContour tool.

At the IDL Command Line, enter:

file = FI LEPATH(' convec. dat', SUBDI RECTORY = ['exanples', 'data'])
data = READ BI NARY(file, DATA DI MS = [248, 248])
| CONTOUR, data

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 153

Double-click on a contour to display the contour properties. Change the Number of
levels setting to 20, change Use palette color to Tr ue, and use the L evels Color
Table setting to load the EOS B predefined color table through the L oad Predefined
button in the Palette Editor. Then, change the Fill contour s setting to Tr ue.

The following figure displays the output of this example:

200
150
100

50

0 N B
0 50 100 150 200

Figure 3-2: Earth Mantle Convection iContour Example

Example 2

This example shows how to use the iTool File — Open command to load DICOM
datainto the iContour tool.

At the IDL Command Line, enter:
| CONTOUR

Select File — Open to display the Open dialog, then browse to find nv _br ai n. dcm
inthe exanpl es/ dat a directory in the IDL distribution, and click Open.

Double-click on a contour to display the contour properties. Then, change Use
palette color to Tr ue and the Fill contour s setting to Tr ue.

Smooth the data by selecting Operations — Filter — Smooth.

What's New in IDL 6.0 ICONTOUR

154 Chapter 3: New IDL Routines

The following figure displays the output of this example:

250
200
150
100

50

0 50 100 150 200 250

Figure 3-3: Smoothed Brain MRI iContour Example

Example 3

This example shows how to use the File — Import command to |oad binary datainto
the iContour tool.

At the IDL Command Line, enter:
| CONTOUR
Select File — Import to display the IDL Import Data wizard.
1. AtStep 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browseto find i denosur f . dat inthe
exanpl es/ dat a directory in the IDL distribution, and click Next>>.

3. At Step 3, select Contour and click Finish.

The Binary Template wizard is displayed. In the Binary Template, change File' s byte
orderingtoLittle Endi an. Then, click New Field, and enter the following
information in the New Field dialog:

« Field Name: dat a (or aname of your choosing)
e Type Float (32 bit)

* Number of Dimensions; 2

ICONTOUR What's New in IDL 6.0

Chapter 3: New IDL Routines 155

+ 1st Dimension Size: 200
« 2nd Dimension Size: 200

Click OK to close the New Field dialog and the Binary Template dialog, and the
contours are displayed.

Double-click on a contour to display the contour properties. Change the Number of
levels setting to 10, change Use palette color to Tr ue, and use the L evels Color
Table setting to load the Rai nbowl8 predefined color table through the L oad
Predefined button in the Palette Editor. Then, change the Fill contour s setting to
True.

Change the Projection setting from Pl anar to Thr ee- D.
The following figure displays the output of this example:

Figure 3-4: Filled Three-DImensional iContour Example

Version History

Introduced: 6.0

What's New in IDL 6.0 ICONTOUR

156 Chapter 3: New IDL Routines

IDL_VALIDNAME

The IDL_VALIDNAME function determines whether a string may be used asavalid
IDL variable name or structure tag name. Optionally, the routine can convert non-
valid characters into underscores, returning a valid name string.

Syntax
Result = IDL_VALIDNAME(Sring [, /CONVERT_ALL] [, /CONVERT_SPACES])

Return Value

Returns the input string, optionally converting all spaces or non-alphanumeric
characters to underscores. If the input string cannot be used as avalid variable or
structure tag name, anull string is returned.

Arguments
String
A string representing the IDL variable or structure tag name to be checked.

Keywords
CONVERT_ALL

If this keyword is set, then String is converted into avalid IDL variable name using
the following rules:

» All non-alphanumeric characters (except * ', ‘" and ‘$') are converted to
underscores

e If thefirst character of Sringisanumber or a‘$', then an underscoreis
prepended to the string

e If thefirst character of Sring isnot avalid character (*_’, ‘", ‘A’...”Z’) then
that character is converted to an underscore

» If Stringisan empty string or areserved word (such as“AND”) then an
underscore is prepended to the string

IDL_VALIDNAME What's New in IDL 6.0

Chapter 3: New IDL Routines 157

Tip
The CONVERT_ALL keyword guarantees that avalid variable name is returned. It
isuseful in converting user-supplied strings into valid IDL variable names.

CONVERT_SPACES

If this keyword is set, then all spaces within String are converted to underscores. If
Sring contains any other non-al phanumeric characters, then anull string is returned,
indicating that the string cannot be used as a valid variable name.

Note
CONVERT_SPACES behaves the same as CREATE_STRUCT when checking
structure tag names.

Examples
The following table provides IDL_VALIDNAME examples and their results.

Example Result
result = | DL_VALI DNAME("' abc') ' abc’
result = IDL_VALIDNAME(' a b c ')
result = IDL_VALIDNAME(' a b c ', / CONVERT_SPACES) ‘‘abc’
result = | DL_VALI DNAVE(' $var')
result = | DL_VALI DNAVE(" $var', /CONVERT_ALL) ' _$VAR
result = | DL_VALI DNAME(' and')
result = | DL_VALI DNAVE(' and', / CONVERT_ALL) " _AND

Table 3-1: IDL_VALIDNAME Examples
Version History
Introduced: 6.0
See Also

CREATE_STRUCT

What's New in IDL 6.0 IDL_VALIDNAME

158 Chapter 3: New IDL Routines

IDLITSYS_CREATETOOL

The IDLITSYS _CREATETOOL function creates an instance of the specified tool
registered within the IDL Intelligent Tools system.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
idlitsys_createtool.prointhelib/itool s subdirectory of the DL
distribution.

Syntax
Result = IDLITSYS CREATETOOL (SrTool[, INITIAL_DATA=data]
[, OVERPLOT=iToolID] [, PANEL_LOCATION={0]|1]|2]|3}]
[, VIEW_GRID=vector] [, VIEW_NEXT] [, VIEW_NUMBER=number]
[, VISUALIZATION_TY PE=vistype])
Return Value
Returns an iTool D that can be used to reference the created tool at alater time.
Arguments
StrTool

The name of atool that has been registered with the iTools system viathe
ITREGISTER routine.

Keywords

Note
Additional keywords/properties associated with the target visualization at the
command line are passed to the underlying system to be applied to the created tool
and visualizations.

INITIAL_DATA

Set this keyword to the data objects that are used to create theinitial visualizationsin
the created tool.

IDLITSYS_CREATETOOL What's New in IDL 6.0

Chapter 3: New IDL Routines 159

OVERPLOT

Set this keyword to the iTool D of thetool in which the visualization is to be created.
ThisiToollD can be obtained during the creation of a previous tool or from the
ITGETCURRENT routine.

PANEL_LOCATION

Set this keyword to an integer value to control where a user interface panel should be
displayed. Possible values are:

0 position the panel above the iTool window

1 position the panel below the iTool window

2 position the panel to the left of the iTool window.

3 position the panel to the right of the iTool window (thisisthe default).

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword isonly used if a new tool is being
created; it isignored if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified.

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view isthe last onein the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

What's New in IDL 6.0 IDLITSYS_CREATETOOL

160 Chapter 3: New IDL Routines

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

VISUALIZATION_TYPE

Set thiskeyword to astring containing the name of aregistered visualization type that
should be used to visualize any data specified by the INITIAL_DATA keyword. If
this keyword is not specified, the iTool will select a visualization type based on the
data type of the input data.

Examples
See Chapter 5, “Example: SimpleiTool” in theiTool Developer’s Guide manual.

Version History
Introduced: 6.0

See Also

ITREGISTER, Chapter 5, “ Creating an iTool Launch Routine” in the iTool
Developer’s Guide manual.

IDLITSYS_CREATETOOL What's New in IDL 6.0

Chapter 3: New IDL Routines 161

IIMAGE

The IIMAGE procedure creates an i Tool and associated user interface (Ul)
configured to display and manipulate image data.

Note
If no arguments are specified, the IMAGE procedure creates an empty Image tool.

This routine iswritten in the IDL language. Its source code can be found in the file
i i mage. prointhelib/itool s subdirectory of the IDL distribution.

Syntax

[IMAGE[, Imagel, X, Y]]

iTool Common Keywords:. [, DIMENSIONS=[X, y]] [, IDENTIFIER=variabl€]

[, LOCATION=[X, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X | Y}RANGE=[min, max]]

iTool Image Keywords: [, ALPHA_CHANNEL=2-D array]

[, BLUE_CHANNEL=2-D array] [, GREEN_CHANNEL=2-D array]

[, IMAGE_DIMENSIONS=[width, height]] [, IMAGE_LOCATION=[X, y]]

[, RED_CHANNEL=2-D array] [, RGB_TABLE=array of 256 by 3 or 3 by 256
elements]

Image Object Keywords: [, CHANNEL=hexadecimal bitmask]
[, CLIP_PLANES=array] [, /HIDE] [, INTERPOLATE] [, /ORDER]

Axis Object Keywords: [, {X | Y}GRIDSTYLE={0|1]|2|3|4]|5]6}]

[{X]|Y}MAJOR=integer] [, {X | Y} MINOR=integer]

[, {X|Y}SUBTICKLEN=ratio] [, {X | Y} TEXT_COLOR=RGB vector]
[,{X]|Y}TICKFONT_INDEX={0|1]|2]|3|4}]

[, {X]|Y}TICKFONT_SIZE=integer] [, { X | Y} TICKFONT_STYLE={0|1]|2]|3}]
[, {X]Y}TICKFORMAT=string or stringarray] [, { X | Y} TICKINTERVAL=value]
[{X]Y}TICKLAYOUT={0| 1| 2}] [, {X | Y} TICKLEN=value]

[{X]|Y}TICKNAME=string array] [, {X | Y} TICKUNITS=string]

[, {X|Y}TICKVALUES=vector] [, {X | Y} TITLE=string]

What's New in IDL 6.0 IIMAGE

162

Chapter 3: New IDL Routines

Arguments

Image

Either avector, atwo-dimensional, or athree-dimensional array representing the
sample values to be displayed as an image.

If Imageisavector:

The X and Y arguments must also be present and contain the same number of

elements. In this case, adialog will be presented that offers the option of
gridding the data to aregular grid (the results of which will be displayed asa
color-indexed image).

If Image is atwo-dimensional array:

If either dimensionis 3:

Image represents an array of X, y, and z values (either [[Xo, Yo, Zol, [X1, Y1, z1],
ey [Xns Y Zad] OF [[X0 X1, -y Xnls [Yor Yo - Yrl» [20, 74, -y Z]] Wherenisthe
length of the other dimension). In this case, the X and Y arguments, if present,
will beignored. A dialog will be presented that allows the option of gridding
the datato aregular grid (the results of which will be displayed as a color-
indexed image, using the z values as the image data values).

If neither dimension is 3:

Image represents an array of sample valuesto be displayed as a color-indexed
image. If X and Y are provided, the sample values are defined as a function of
the corresponding (X, y) locations; otherwise, the sample values are implicitly
treated as a function of the array indices of each element of Image.

If Imageisathree-dimensiona array:

IIMAGE

If one of the dimensionsis 3:

Imageisa3xnxm, nx3xm,ornxmx 3array representing the red, green,
and blue channels of the image to be displayed.

If one of the dimensionsis 4:

Imageisadxnxm,nx4xm,ornxmx 4 array representing the red, green,
blue, and alpha channels of the image to be displayed.

What's New in IDL 6.0

Chapter 3: New IDL Routines 163

X

Either avector or atwo-dimensional array representing the x-coordinates of the
image grid.

If the Image argument is a vector:
¢ X'must be avector with the same number of elements as Image.

If the Image argument is atwo-dimensional array (for which neither dimension is 3):
e If Xisavector:

Each element of X specifiesthe x-coordinates for acolumn of Image (e.g., X[0]
specifies the x-coordinate for Image[0, *]).

e |f Xisatwo-dimensional array:

Each element of X specifies the x-coordinate of the corresponding point in
Image (X;; specifies the x-coordinate of Image;;).

Either a vector or atwo-dimensional array representing the y-coordinates of the
image grid.

If the Image argument is a vector:

* Y must be avector with the same number of elements.
If the Image argument is atwo-dimensional array:

* If Yisavector:

Each element of Y specifies the y-coordinates for a column of Image (e.g., Y[0]
specifies the y-coordinate for Image[*, 0]).

« If Yisatwo-dimensional array:

Each element of Y specifies the y-coordinate of the corresponding point in
Image (; specifies the y-coordinate of Image;).

What's New in IDL 6.0 IIMAGE

164

Chapter 3: New IDL Routines

Keywords

IIMAGE

Note
Because keywords to the [IMAGE routine correspond to the names of registered
properties of the ilmage tool, the keyword names must be specified in full, without
abbreviation.

ALPHA_CHANNEL

Set this keyword to atwo-dimensional array representing the alpha channel pixel
values for the image to be displayed. This keyword isignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, GREEN_CHANNEL, and BLUE_CHANNEL keywords.

BLUE_CHANNEL

Set this keyword to atwo-dimensional array representing the blue channel pixel
values for the image to be displayed. This keyword isignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, GREEN_CHANNEL, and ALPHA_CHANNEL keywords.

CHANNEL

Set this keyword to a hexadecimal bitmask that defines which color channel(s) to
draw. Each bit that isa 1 is drawn; each bit that isa 0 is not drawn. For example,
'ff0000'X represents a Blue channel write. The default isto draw all channels, and is
represented by the hexadecimal value 'ffffff'X.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of theform [A, B, C, D], where Ax + By + Cz+ D = 0. Portions of this
object that fall in the half space Ax + By + Cz+ D > 0 will be clipped. By default, the
value of this keyword isascalar (-1) indicating that no clipping planes are to be

applied.

Note
A window isonly able to support alimited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

What's New in IDL 6.0

Chapter 3: New IDL Routines 165

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

GREEN_CHANNEL

Set this keyword to a two-dimensional array representing the green channel pixel
values for the image to be displayed. This keyword isignored if the Image argument
is present, and is intended to be used in conjunction with some combination of the
RED_CHANNEL, BLUE_CHANNEL, and ALPHA_CHANNEL keywords.

HIDE
Set this keyword to a boolean value indicating whether this object should be drawn:
e 0= Draw graphic (the default)
e 1=Do not draw graphic
IDENTIFIER

Set thiskeyword to anamed IDL variable that will contain theiTool D for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

IMAGE_DIMENSIONS

Set this keyword to a 2-element vector, [width, height], to specify the image
dimensions (in data units). By default, the dimensions match the pixel width of the
image.

IMAGE_LOCATION

Set this keyword to a 2-element vector, [X, Y], to specify the image location (in data
units). By default, the location is [0, O].

INTERPOLATE

Set this keyword to one (1) to display the ilmage tool using bilinear interpolation.
The default is to use nearest neighbor interpolation.

What's New in IDL 6.0 IIMAGE

166

IIMAGE

Chapter 3: New IDL Routines

LOCATION

Set this keyword to atwo-element vector of the form [, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The nameis
used for tool-related display purposes only—as the root of the hierarchy shown in the
Tool Browser, for example.

ORDER

Set this keyword to force the rows of the image data to be drawn from top to bottom.
By default, image data is drawn from the bottom row up to the top row.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, anew tool is created.

RED_CHANNEL

Set this keyword to atwo-dimensional array representing the red channel pixel values
for the image to be displayed. This keyword isignored if the Image argument is
present, and isintended to be used in conjunction with some combination of the
GREEN_CHANNEL, BLUE_CHANNEL, and ALPHA_CHANNEL keywords.

RGB_TABLE

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values. If no color
tables are supplied, the tool will provide a default 256-entry linear grayscale ramp.

TITLE

Set this keyword to a string to specify atitle for the tool. Thetitle is displayed in the
title bar of the tool.

What's New in IDL 6.0

Chapter 3: New IDL Routines 167

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword isonly used if anew tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID isignored).

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view isthe last onein the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

[XY]MAJOR

Set this keyword to an integer representing the number of magjor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XY]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

What's New in IDL 6.0 IIMAGE

168

IIMAGE

Chapter 3: New IDL Routines

[XY]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.

[XY]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the magjor tick mark.

[XY]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
valueis|O0, 0, 0] (black).

[XY]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

¢ 0O=Helvetica

e« 1=Courier

e 2=Times

e 3=Symbol

e 4=Hershey
[XY]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 paints.

[XY]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

¢« 0=Norma
+ 1=Bold
« 2=ltdic

« 3=BoldItdic

What's New in IDL 6.0

Chapter 3: New IDL Routines 169

[XY]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of afunction to be used to format the tick mark labels. If an
array is provided, each string corresponds to alevel of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it isinterpreted as the name of a
callback function to be used to generate tick mark |abels.

If TICKUNITS are not specified:

e Thecallback function is called with three parameters: Axis, Index, and Value,
where:

« Axisisthe axis number: O for X axis, 1 for Y axis, 2 for Z axis
¢ Indexisthetick mark index (indices start at 0)

¢ Valueisthe data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

*« AXxis, Index, and Value are the same as described above.

* Level istheindex of the axislevel for the current tick value to be labeled.
(Level indicesstart at 0.)

Used with the LABEL _DATE function, this property can easily create axes with
date/time labels.

[XY]TICKINTERVAL

Set this keyword to afloating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XY Z]MAJOR). The value of
this keyword takes precedence over the value set for the [XY Z]MAJOR keyword.

For example, if TICKUNITS=['S, 'H', 'D"], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

What's New in IDL 6.0 IIMAGE

170 Chapter 3: New IDL Routines

[XY]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

¢ 0=Theaxisline, major tick marks and tick labels are al included. Minor tick
marks only appear on the first level of the axis. Thisisthe default tick layout
style.

e 1=0nly thelabels for the mgjor tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

e 2=Eachmajor tick interval isoutlined by abox. Thetick labels are positioned
within that box (left-aligned). For the first axislevel only, the major and minor
tick marks will also be drawn.

Note
For al tick layout styles, at |east one tick label will appear on each level of the axis
(even if no mgjor tick marks fall along the axisline). If there are no major tick
marks, the singletick label will be centered along the axis.

[XY]TICKLEN

Set this keyword to a floating-point value that specifies the length of each mgjor tick
mark, measured in data units. The recommended, and default, tick mark length is0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XY]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XY]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axistick labeling. If more than one unit is provided, the axiswill be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

IIMAGE What's New in IDL 6.0

Chapter 3: New IDL Routines 171

Valid unit strings include:

¢ "Numeric"
* "Years'

* "Months'
* "Days'

* "Hours'

e "Minutes'
e "Seconds"

« "Time" - Usethisvalue to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

e ""-Usethe empty string to indicate that no tick units are being explicitly set.
Thisimpliesthat asingle axis level will be drawn using the "Numeric" unit.
Thisisthe default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value stringsis also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS ='Days).

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XY]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XY]TITLE

Set this keyword to a string representing the title of the specified axis.

What's New in IDL 6.0 IIMAGE

172 Chapter 3: New IDL Routines

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported viathe File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data viathe iTool file menu, refer to “ Data Import Methods’ in Chapter 2
of theiTool User’s Guide manual.

Example 1

This example shows how use the IDL Command Line to load datainto the ilmage
tool.

At the IDL Command Line, enter:

file = FILEPATH(' mineral .png', $
SUBDI RECTORY = ['exanples', 'data'])
data = READ PNG(file)
|1 MAGE, data, TITLE = 'Electron Inage of M neral Deposits'
Double-click the image to display image properties, and use the | mage Palette
setting to load the St er n Speci al predefined color table through the L oad
Predefined button in the Palette Editor.

Use the Text Annotation tool to insert atitle at the top of theimage. Select Insert —
Colorbarstoinsert acolor bar at the bottom of the image. Double-click on the
colorbar to display its properties, and change the Title settingto St ern Speci al .

The following figure displays the output of this example:

Electron Microscope Image of Mineral Deposits
in Polished Granite and Gneiss

200

150

100

50

sy A
100 150 200 250

o
ok
(=1

0 127 255
Stern Special

Figure 3-5: Mineral ilmage Example with Sterns Color Table

IIMAGE What's New in IDL 6.0

Chapter 3: New IDL Routines 173

Example 2

This example shows how to use the iTool File — Open command to load binary data
into the ilmage tool.

At the IDL Command Line, enter:
I 1 MAGE

Select File — Open to display the Open dialog, then browse to find wor | del v. dat
inthe exanpl es/ dat a directory in the IDL distribution, and click Open.

In the Binary Template dialog, click New Field, and enter the following information
inthe New Field dialog:

* Field Name: dat a (or aname of your choosing)
e Type Byte (unsigned 8-hits)

¢ Number of Dimensions. 2

¢ 1st Dimension Size: 360

e 2nd Dimension Size: 360

Click OK to close the New Field dialog and the Binary Template dialog, and the
image is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Double-click the image to display image properties, and use the | mage Palette
setting to load the STD GAMVA- | | predefined color table through the L oad
Predefined button in the Palette Editor.

What's New in IDL 6.0 IIMAGE

174 Chapter 3: New IDL Routines

The following figure displays the output of this example:

100

0 P I T W s s S
0 100 200 300

Figure 3-6: World Elevation ilmage Example

Example 3

This example shows how to use the IDL Import Data Wizard to load image datainto
the ilmage tool.

At the IDL Command Line, enter:
|| MAGE
Select File — Import to display the IDL Import Data wizard.
1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browseto find n_vasi nf ect a. j pg in the
exanpl es/ dat a directory in the IDL distribution, and click Next>>.

3. At Step 3, select Image and click Finish.
Define the edges within the image by selecting Operations — Filter — Sobel Filter.

IIMAGE What's New in IDL 6.0

Chapter 3: New IDL Routines 175

The following figure displays the output of this example:

Figure 3-7: Sobel Flltered Neocosmospora Vasinfecta ilmage Example

Version History

Introduced: 6.0

What's New in IDL 6.0 IIMAGE

176

Chapter 3: New IDL Routines

IPLOT

IPLOT

The IPLOT procedure creates an i Tool and the associated user interface (Ul)
configured to display and manipulate plot data.

Note
If no arguments are specified, the IPLOT procedure creates an empty Plot tool.

This routine iswritten in the IDL language. Its source code can be found in thefile
i pl ot.prointhelib/itools subdirectory of the DL distribution.

Syntax

Cartesian

IPLOT, [X]] Y

or

IPLOT, X, Y, Z

Polar

IPLOTI[, R], Theta, /POLAR

iTool Common Keywords:. [, DIMENSIONS=[X, y]] [, IDENTIFIER=variabl€]

[, LOCATION=[x, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[{X]Y | Z} RANGE=[min, max]]

iTool Plot Keywords: [, ERRORBAR_COLOR=RGB vector]

[, ERROR_CAPSIZE=points{0.0to 1.0}] [, /FILL_BACKGROUND]

[, FILL_COLOR=RGB vector] [, FILL_LEVEL=value] [, RGB_TABLE=byte array
of 256 by 3 or 3 by 256 elements] [, /SCATTER] [, SYM_COL OR=RGB vector]

[, SYM_INCREMENT=integer] [, SYM_INDEX=integer]

[, SYM_SIZE=points{0.0to 1.0}] [, SYM_THICK=points{ 1.0 to 10.0}]

[, TRANSPARENCY =percent{ 0.0 to 100.0}] [, /USE_DEFAULT_COLOR]

[,/ XY_SHADOW] [, {X | Y | Z} _ERRORBARS] [, {X | Y | Z} _LOG]

[, {X]Y | Z} ERROR=vector or array] [, /XZ_SHADOW] [, /YZ_SHADOW]

Plot Object Keywords: [, CLIP_PLANES=array] [, COLOR = RGB vector]

[, /HIDE] [, /HISTOGRAM] [, LINESTY LE=integer] [, MAX_VALUE=valug]
[, MIN_VALUE=value] [, NSUM=valug] [, /POLAR] [, THICK=points{ 1.0 to
10.0}] [, VERT_COL ORS=byte vector]

What's New in IDL 6.0

Chapter 3: New IDL Routines 177

Axis Object Keywords: [, {X |Y | Z}GRIDSTYLE={0|1|2|3|4|5]6}]
L{X]Y |Z}MAJOR=integer] [, {X | Y | Z} MINOR=integer]

[,{X|Y |Z}SUBTICKLEN=ratio] [, {X |Y | Z} TEXT_COLOR=RGB vector]
[L{X]|Y |Z}TICKFONT_INDEX={0|1]2]|3]|4}]

[,{X|Y | Z} TICKFONT_SIZE=integer]

[{X|Y |Z}TICKFONT_STYLE={0]|1]|2|3}]

[{X]|Y |Z} TICKFORMAT=string or string array]

[L{X]|Y |Z}TICKINTERVAL=value] [,{X | Y | Z} TICKLAYOUT={0| 1] 2}]
[,{X|Y |Z}TICKLEN=value] [, {X | Y | Z} TICKNAME-=string array]
[,{X]|Y |Z}TICKUNITS=string] [, {X | Y | Z} TICKVALUES=vector]
[,{X|Y | Z} TITLE=string]

Arguments

R

If the POLAR keyword is set, Risavector representing the radius of the polar plot. If
Risspecified, Theta is plotted asafunction of R. If Ris not specified, Thetais plotted
as afunction of the vector index of Theta.

Theta

If the POLAR keyword is set, Theta is a vector representing the angle (in radians) of
the polar plot.

X
A vector representing the x-coordinates of the plot.

Y

A vector or atwo-dimensional array. If Yis:

e avector, it represents the y-coordinates of the plot. If X is not specified, Yis
plotted as a function of the vector index of Y. If X is specified, Yisplotted asa
function of X.

e aZ2-by-naray, Y[0, *] represents the x-coordinates and Y[1, *] representsthe y-
coordinates of the plot.

e a3-by-narray, Y[0, *] represents the x-coordinates, Y[1, *] represents the y-
coordinates, and Y[2, *] represents the z-coordinates of the plot.

What's New in IDL 6.0 IPLOT

178 Chapter 3: New IDL Routines

Z

A vector representing the z-coordinates of the plot.
Keywords

Note
Because keywords to the IPLOT routine correspond to the names of registered
properties of the iPlot tool, the keyword names must be specified in full, without
abbreviation.

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of theform [A, B, C, D], where Ax + By + Cz+ D = 0. Portions of this
object that fall in the half space Ax + By + Cz+ D > 0 will be clipped. By default, the
value of this keyword isascalar (-1) indicating that no clipping planes are to be

applied.

Note
A window is only able to support alimited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to an RGB value specifying the color to be used as the foreground
color for this plot. The default is [0, O, 0] (black).

DIMENSIONS

Set this keyword to atwo-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

ERRORBAR_COLOR

Set this keyword to an RGB val ue specifying the color for the error bar. The default
vaueis|0, 0, 0] (black).

IPLOT What's New in IDL 6.0

Chapter 3: New IDL Routines 179

ERRORBAR_CAPSIZE

Set this keyword to afloating-point value specifying the size of the error bar endcaps.
Thisvalueranges from 0 to 1.0, where avalue of 1.0 resultsin an endcap that is 10%
of the data range.

FILL_BACKGROUND (for 2D plots only)

Set this keyword to fill the area under the plot. This keyword is only available for
two-dimensional plots. This keyword isignored for three-dimensional plots.

FILL_COLOR (for 2D plots only)

Set this keyword to an RGB value specifying the color for the filled area. The default
valueis[255, 255, 255] (white). This keyword is only available for two-dimensional
plots. This keyword isignored for three-dimensional plots.

FILL_LEVEL (for 2D plots only)

Set this keyword to afloating-point value specifying the y-value for the lower
boundary of thefill region. This keyword is only available for two-dimensional plots.
This keyword isignored for three-dimensional plots.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:
¢ 0= Draw graphic (the default)
e 1=Donot draw graphic
HISTOGRAM (for 2D plots only)

Set this keyword to force only horizontal and vertical lines to be used to connect the
plotted points. By default, the points are connected using asingle straight line. This
keyword is only available for two-dimensional plots. This keyword isignored for
three-dimensional plots.

IDENTIFIER

Set thiskeyword to anamed IDL variable that will contain theiToolID for the created
tool. This value can then be used to reference thistool during overplotting operations
or command-line-based tool management operations.

What's New in IDL 6.0 IPLOT

180

IPLOT

Chapter 3: New IDL Routines

LINESTYLE

Set this keyword to indicate the line style that should be used to draw the plot lines.
The value can be either an integer value specifying a pre-defined line style, or atwo-
element vector specifying a stippling pattern.

To use a pre-defined line style, set the LINESTY LE keyword equal to one of the
following integer values:

* 0= Solid line (the default)

e 1=dotted

e 2=dashed

e 3 =dashdot

e 4 =dash dot dot dot
¢« 5=longdash

¢ 6=nolinedrawn

To define your own stippling pattern, specify atwo-element vector [repeat, bitmask],
where repeat indicates the number of times consecutiverunsof 1'sor 0'sin the
bitmask should be repeated. (That is, if three consecutive 0's appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must bein the range 1 <repeat < 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LI NESTYLE = [2, ' FOFO' X] describes adashed line (8 bitson, 8
bits off, 8 bits on, 8 bits off).

LOCATION

Set this keyword to atwo-element vector of the form [, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

MAX_VALUE

The maximum value to be plotted. If this keyword is present, data values greater than
the value of MAX_VALUE are treated as missing data and are not plotted.

Note
The |EEE floating-point value NaN is aso treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.

What's New in IDL 6.0

Chapter 3: New IDL Routines 181

MIN_VALUE

The minimum value to be plotted. If this keyword is present, data values less than the
value of MIN_VALUE are treated as missing data and are not plotted.

Note
The |EEE floating-point value NaN is also treated as missing data. IDL converts,
maintains, and returns this data as double-precision floating-point.

NAME
Set this keyword to a string to specify the name for this visualization.
NSUM

Set this keyword to the number of data points to average when plotting. If NSUM is
larger than 1, every group of NSUM pointsis averaged to produce one plotted point.
If there are M data points, then M/NSUM points are plotted.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, anew tool is created.

POLAR

Set this keyword to display the plot as a polar plot. If this keyword is set, the
arguments will beinterpreted as R and Theta or simply Theta for asingle argument. If
Ris not supplied the plot will use a vector of indices for the R argument.

RGB_TABLE

Set thiskeyword to either a3 by 256 or 256 by 3 byte array containing color valuesto
use for vertex colors. If the values supplied are not of type byte, they are scaled to the
byterange using BY TSCL. Usethe VERT _COL ORS keyword to specify indices that
select colors from the values specified with RGB_TABLE.

SCATTER

Set this keyword to generate a scatter plot. This action is equivalent to setting
LINESTYLE =6 (noline) and SYM_INDEX = 3 (Period symbol).

What's New in IDL 6.0 IPLOT

182 Chapter 3: New IDL Routines

SYM_COLOR
Set this keyword to an RGB value specifying the color for the plot symbol.

Note
Thiscolor isapplied to the symbol only if the USE_DEFAULT_COLOR property is
Set.

SYM_INCREMENT

Set this keyword to an integer value specifying the number of verticesto increment
between symbol instances. The default value is 1, which places a symbol on every
vertex.

SYM_INDEX

Set this keyword to one of the following scalar-represented internal default symbols:
¢ 0=Nosymbol
e 1=Plussign, '+ (default)
e 2=Asterisk
e 3 =Period (Dot)

¢ 4=Diamond

e 5=Triangle

e 6=Square

e 7=X

e 8=Arrow Head
SYM_SIZE

Set this keyword to afloating-point value from 0.0 to 1.0 specifying the size of the
plot symbol. A value of 1.0 resultsin an symbol that is 10% of the width/height of the
plot.

SYM_THICK

Set this keyword to floating-point value from 1 to 10 points specifying the thickness
of the plot symbol.

IPLOT What's New in IDL 6.0

Chapter 3: New IDL Routines 183

THICK

Set this keyword to avalue between 1.0 and 10.0, specifying the line thickness to be
used to draw the plotted lines, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to specify atitle for the tool. Thetitle is displayed in the
title bar of the tool and is used for tool-related display purposes only—as the root of
the hierarchy shown in the Tool Browser, for example.

TRANSPARENCY

Set this keyword to floating-point val ue specifying the transparency of thefilled area.
Valid values range from 0.0 to 100.0. The default value is 0.0 (opaque).

USE_DEFAULT_COLOR

Set this keyword to have the color of the symbols match the plot color. If this
keyword is set to O (USE_DEFAULT_COLOR = 0), the color specified by the
SYM_COLOR keyword is used for symbolsinstead of matching the color of the plot.

VERT_COLORS

Set this keyword to avector of indicesinto the color table to select colorsto use for
each vertex (plot data point). Alternately, set this keyword to a 3 by N byte array
containing color valuesto use for each vertex. If the values supplied are not of type
byte, they are scaled to the byte range using BY TSCL. If indices are supplied but no
colors are provided with the RGB_TABLE keyword, then adefault grayscalerampis
used. If a3 by N array of colorsis provided, the colors are used directly and the color
values provided with RGB_TABLE are ignored. If the number of indices or colors
specified is less than the number of vertices, the colors are repeated cyclically.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword isonly used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID isignored).

What's New in IDL 6.0 IPLOT

184

IPLOT

Chapter 3: New IDL Routines

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view isthe last onein the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

XY_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in athree-dimensional plot. The
shadow liesin the XY plane at the minimum value of the data space range of the z
axis. This keyword has no effect for two-dimensional plots.

[XYZ]_ERRORBARS

Set this keyword to show error bars. The Z_ ERRORBARS keyword is for three-
dimensional plots only.

[XYZ]_LOG

Set this keyword to specify alogarithmic axis. The minimum value of the axis range
must be greater than zero. The Z_L OG keyword is for three-dimensional plots only.

What's New in IDL 6.0

Chapter 3: New IDL Routines 185

[XYZ]ERROR

Set this keyword to either avector or a2 by N array of error values to be displayed as
error barsfor the [XY Z] dimension of the plot. The length of this array must be equal
in length to the number of vertices of the plot or it will beignored. If thiskeyword is
set to avector, the value will be applied as both a negative and positive error and the
error bar will be symmetric about the plot vertex. If thiskeywordissettoa2 by N
array the [0, *] values define the negative error and the [1, *] values define the
positive error, allowing asymmetric error bars. The ZERROR keyword is for three-
dimensional plots only.

[XYZ]JMAJOR

Set this keyword to an integer representing the number of magjor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely. ZMAJOR is for three-
dimensional plots only.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely. ZMINOR isfor three-
dimensional plots only.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum. ZRANGE isfor three-
dimensional plotsonly.

[XYZ]SUBTICKLEN

Set this keyword to afloating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark. ZSUBTICKLEN isfor
three-dimensional plots only.

[XYZ]JTEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
valueis|0, 0, O] (black). ZTEXT_COLOR isfor three-dimensional plots only.

What's New in IDL 6.0 IPLOT

186

IPLOT

Chapter 3: New IDL Routines

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

« O=Helvetica
e 1=Courier
e 2=Times
e 3=Symboal
e 4 =Hershey
ZTICKFONT_INDEX isfor three-dimensional plots only.

[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points. ZTICKFONT_SIZE isfor three-dimensional plots
only.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

¢ 0=Normal
+ 1=Bold
¢ 2=ltdic

 3=Boldltaic
ZTICKFONT_STYLE isfor three-dimensional plots only.

[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of afunction to be used to format the tick mark labels. If an
array is provided, each string corresponds to alevel of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes’ in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it isinterpreted as the name of a
callback function to be used to generate tick mark labels.

What's New in IDL 6.0

Chapter 3: New IDL Routines 187

If TICKUNITS are not specified:

e Thecallback function is called with three parameters. Axis, Index, and Value,
where:

« Axisistheaxisnumber: O for X axis, 1 for Y axis, 2 for Z axis
¢ Indexisthetick mark index (indices start at 0)

* Valueisthe datavalue at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

* AXis, Index, and Value are the same as described above.

*« Level istheindex of the axis level for the current tick value to be labeled.
(Level indices start at 0.)

Used with the LABEL_DATE function, this property can easily create axes with
date/time |abels.

ZTICKFORMAT isfor three-dimensional plots only.
[XYZ]TICKINTERVAL

Set this keyword to afloating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XY Z]MAJOR). The value of
this keyword takes precedence over the value set for the [XY Z]MAJOR keyword.

For example, if TICKUNITS=['S, 'H', 'D"], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

ZTICKINTERVAL isfor three-dimensional plots only.

What's New in IDL 6.0 IPLOT

188

IPLOT

Chapter 3: New IDL Routines

[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

¢ 0=Theaxisline, major tick marks and tick labels are al included. Minor tick
marks only appear on the first level of the axis. Thisisthe default tick layout
style.

e 1=0nly thelabels for the mgjor tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

e 2=Eachmajor tick interval isoutlined by abox. Thetick labels are positioned
within that box (left-aligned). For the first axislevel only, the major and minor
tick marks will also be drawn.

ZTICKLAYOUT isfor three-dimensional plots only.

Note
For al tick layout styles, at |east one tick label will appear on each level of the axis
(even if no major tick marks fall along the axisline). If there are no major tick
marks, the single tick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to afloating-point value that specifies the length of each major tick
mark, measured in data units. The recommended, and default, tick mark length is0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.
ZTICKLEN isfor three-dimensional plotsonly.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark. ZTICKNAME isfor three-dimensional plots only.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axistick labeling. If more than one unit is provided, the axiswill be drawnin multiple
levels, onelevel per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axisline).

What's New in IDL 6.0

Chapter 3: New IDL Routines 189

Valid unit strings include:

¢ "Numeric"
* "Years'

* "Months'
* "Days'

* "Hours'

e "Minutes'
e "Seconds"

« "Time" - Usethisvalue to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

e ""-Usethe empty string to indicate that no tick units are being explicitly set.
Thisimpliesthat asingle axis level will be drawn using the "Numeric" unit.
Thisisthe default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value stringsis also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS ='Days).

ZTICKUNITS isfor three-dimensional plots only.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES s set to O, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point. ZTICKVALUES
isfor three-dimensional plotsonly.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis. ZTITLE isfor
three-dimensional plots only.

What's New in IDL 6.0 IPLOT

190

IPLOT

Chapter 3: New IDL Routines

XZ_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in athree-dimensional plot. The
shadow liesin the XZ plane at the minimum value of the data space range of the y-
axis. This keyword has no effect for two-dimensional plots.

YZ_SHADOW (for 3D plots only)

Set this keyword to display a shadow of the plot in athree-dimensional plot. The
shadow liesin the Y Z plane at the minimum value of the data space range of the x-
axis. This keyword has no effect for two-dimensional plots.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported viathe File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data viathe iTool file menu, refer to “ Data Import Methods”™ in Chapter 2
of theiTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to load data and variables
into the iPlot tool.

At the IDL Command Line, enter:

file = FILEPATH(' el ni no.dat', SUBDI RECTORY = ['exanples','data'])
data = READ BINARY(file, DATA TYPE = 4, DATA DIMS = [500, 1], $
ENDI AN = "little')

time = DI NDGEN(500)*0.25d + 1871
| PLOT, tine, data, TITLE = "El Nino', COLOR = [255, 128, 0]

Place atitle on the time axis of your plot by selecting the axis, right-clicking to
display the context menu, selecting Propertiesto display the property sheet, and
typing Year inthe Titlefield.

Place atitle on the temperature axis of your plot by selecting the axis, displaying the
property sheet, and entering the following in the Title field:

Tenperature Anonaly (! Uo! NC)

Annotate your plot by selecting the Text Annotation tool, clicking near the top of the
plot, and typing El Ni no.

What's New in IDL 6.0

Chapter 3: New IDL Routines 191

Add the specia character to the annotation by selecting the annotation text,
displaying the property sheet, selecting the lower-casen in Ni no inthe Titlefield,
and replacing it with the following:

I Z(U+OF1)

Note
U+O0OF1 is unicode for the i character.

The following figure displays the output of this example:

ElNifo

T
1

—

Temperature Anomaly (°C)

LI

1880 1900 1920 1940 1960 1980
Year

Figure 3-8: El Nifio iPlot Example

Example 2

This example shows how to use the File — Open command to load binary data into
theiPlot tool.
At the IDL Command Line, enter:

| PLOT

Select File — Open command to display the Open dialog, then browse to find
dirty_sine. dat intheexanpl es/ dat a directory in the IDL distribution, and
click Open.

What's New in IDL 6.0 IPLOT

192 Chapter 3: New IDL Routines

In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

¢ Field Name: dat a (or a name of your choosing)
e Type Byte (unsigned 8-bits)

¢ Number of Dimensions. 1

e 1st Dimension Size: 256

Click OK to closethe New Field dialog and the Binary Template dialog, and the
surfaceis displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Annotate your plot by selecting the Text Annotation tool, clicking near the curve, and
typing Noi sy Si ne Wave.

The following figure displays the output of this example:

250

200
Noisy Sine Wave

I|IIII|IIII‘|:

150

100

50

0IIII|IIII|IIII|III|III
50 100 150 200

(%)}
D—HII|IIII

o

Figure 3-9: Noisy Sine Data iPlot Example

Example 3

This example shows how to usethe File — Import command to load ASCII datainto
theiPlot tool.

At the IDL Command Line, enter:
| PLOT

IPLOT What's New in IDL 6.0

Chapter 3: New IDL Routines 193

Select File — Import to display the IDL Import Data wizard.
1. At Step 1, select From a File and click Next>>,

2. At Step 2, under File Name:, browse to find si ne_waves. t xt inthe
exanpl es/ dat a directory in the IDL distribution, and click Next>>.

3. At Step 3, select Plot and click Finish.

Then, the ASCII Template wizard is displayed.
1. At Step 1, click Next>> to accept the displayed data type/range definition.
2. At Step 2, click Next>> to accept the displayed delimiter/fields definition.

3. At Step 3, click Finish to accept the displayed field specification. The
si ne_waves. t xt plotisdisplayed in theiPlot window.

The plot consists of two overlapping sine waves. To make it easier to distinguish
between the two, change the appearance of the noisy sine wave to adotted line
pattern by selecting the noisy sine wave, right-clicking to display the context menu,
selecting Properties, and changing the Linestyle property to a dotted line.

The following figure displays the output of this example:

250 FETTTITTT] TTTTTTTTTTITTIATT
200 [

150 [

100

50

0 ||I|||||"|||||||||||| REREEE § S (e

0 100 200 300 400

Figure 3-10: Overlapping Sine Waves iPlot Example

Version History

Introduced: 6.0

What's New in IDL 6.0 IPLOT

194

Chapter 3: New IDL Routines

ISURFACE

The ISURFACE procedure creates an iTool and the associated user interface (Ul)
configured to display and manipulate surface data.

Note
If no arguments are specified, the ISURFACE procedure creates an empty Surface
tool.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
i surface.prointhelib/itool s subdirectory of the IDL distribution.

Syntax

ISURFACE

ISURFACEL[, Z[, X, Y]]

iTool Common Keywords: [, DIMENSIONS=[x, y]] [, IDENTIFIER=variable€]

[, LOCATION=[X, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [, VIEW_NUMBER=integer]
[, {X]Y | Z} RANGE=[min, max]]

iTool Surface Keywords: [, RGB_TABLE=array of 256 by 3 or 3 by 256 elementg]
[, TEXTURE_ALPHA=2-D array] [, TEXTURE_BLUE=2-D array]

[, TEXTURE_GREEN=2-D array] [, TEXTURE_IMAGE=array]

[, TEXTURE_RED=2-D array]

Surface Object Keywords: [, BOTTOM=index or RGB vector]

[, CLIP_PLANES=array] [, COLOR=RGB vector] [, DEPTH_OFFSET=value]
[,/EXTENDED_LEGOQ] [, /HIDDEN_LINES] [, /HIDE] [, LINESTY LE=value]
[, SHADING={0 | 1}] [, /[SHOW_SKIRT] [, SKIRT=Z value]

[, STYLE={0|1|2|3|4|5]|6}] [, TEXTURE_HIGHRES]

[, /TEXTURE_INTERP] [, THICK=points{ 1.0 to 10.0}] [, /USE_TRIANGLES
[, VERT_COLORS=vector or 2-D array] [, ZERO_OPACITY_SKIP={0 | 1}]

AxisObject Keywords: [, {X |Y |Z}GRIDSTYLE={0]1|2]|3|4|5]6}]
L{X]Y |ZIMAJOR=integer] [, {X | Y | Z} MINOR=integer]

[{X]Y |Z} SUBTICKLEN=ratio] [, {X |Y | Z} TEXT_COLOR=RGB vector]
L{X]Y |Z}TICKFONT_INDEX={0|1|2]|3]|4}]

[{X]|Y |Z} TICKFONT_SIZE=integer]

L{X|Y |Z}TICKFONT_STYLE={0|1|2]|3}]

[,{X]Y | Z} TICKFORMAT=string or string array]

L{X]Y |Z}TICKINTERVAL=value] [, {X | Y | Z} TICKLAYOUT={0|1]|2}]
L{X]|Y |Z}TICKLEN=value] [, {X | Y | Z} TICKNAME=string array]

What's New in IDL 6.0

Chapter 3: New IDL Routines 195

[,{X |Y | Z} TICKUNITS=string] [, {X | Y | Z} TICKVALUES=vector]
[,{X |Y | Z} TITLE=string]

Arguments

X

A vector or two-dimensional array specifying the x-coordinates of the grid.
If Xisavector:
e |If Yand Z are vectors and have the same length as X:

Each element of X specifies the x-coordinates of a point in space (e.g., X[0]
specifies the x-coordinate for Y[O] and Z[0]). The gridding wizard will
automatically launch in this case.

e If Zisatwo-dimensiona array:

Each element of X specifies the x-coordinates for a column of Z (e.g., X[0]
specifies the x-coordinate for Z[0, *]).

If X isatwo-dimensional array, each element of X specifies the x-coordinate of the
corresponding point in Z (X;; specifies the x-coordinate of Z;).
Y

A vector or two-dimensional array specifying the y-coordinates of the grid.
If Yisavector:
e If Xand Z are vectors and have the same length as Y-

Each element of Y specifies the y-coordinates of a point in space (e.g., Y[0]
specifies the y-coordinate for X[0] and Z[0]). The gridding wizard will
automatically launch in this case.

e If Zisatwo-dimensiona array:

Each element of Y specifies the y-coordinates for a column of Z (e.g., Y[O]
specifies the y-coordinate for Z[*, Q).

If Yisatwo-dimensional array, each element of Y specifies the y-coordinate of the
corresponding point in Z (; specifies the y-coordinate of Z;;).

What's New in IDL 6.0 ISURFACE

196

Chapter 3: New IDL Routines

A vector or two-dimensional array specifying the datato be displayed.
If Z isavector,
e |f Xand Y are vectors and have the same length as Z:

Each element of Z specifies the z-coordinates of a point in space (e.g., Z[0]
specifies the z-coordinate for X[0] and Y[Q]). The gridding wizard will
automatically launch in this case.

If Z isatwo-dimensional array,
e |f XandY are provided:

The surface is defined as a function of the (x, y) locations specified by their
contents.

e If Xand Y are not provided:

The surface is generated as a function of the array indices of each element of Z.

Keywords

Note
Because keywords to the ISURFACE routine correspond to the names of registered
properties of the i Surface tool, the keyword names must be specified in full, without
abbreviation.

BOTTOM

Set this keyword to an RGB color for drawing the bottom of the surface. Set this
keyword to a scalar to draw the bottom with the same color as the top.

CLIP_PLANES

ISURFACE

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of the form [A, B, C, D], where Ax + By + Cz+ D = 0. Portions of this
object that fall in the half space Ax + By + Cz+ D > 0 will be clipped. By default, the
value of this keyword isascalar (-1) indicating that no clipping planes are to be

applied.

What's New in IDL 6.0

Chapter 3: New IDL Routines 197

Note
A window is only able to support alimited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COLOR

Set this keyword to the color to be used as the foreground color for this model. The
color is specified as an RGB vector. The default is[225, 184, Q].

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

DEPTH_OFFSET

Set this keyword to an integer value that specifies an offset in depth to be used when
rendering filled primitives. This offset is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are “Z-Buffer units,” where avalue of 1 is used to specify a distance that
correspondsto a single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled primitive to be rendered dightly
deeper than other primitives, independent of model transforms. Thisis useful for
avoiding stitching artifacts caused by rendering lines or polygons on top of other
polygons at the same depth.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
“layering” complex scenes with multiple DEPTH_OFFSET values. It is safest to
use only aDEPTH_OFFSET value of 0, the default, and one other non-zero value,
such as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used.
This can lead to portability problems because aset of DEPTH_OFFSET values may
produce better results on one machine than on another. Using IDL’s software
renderer will help improve the cross-platform consistency of scenes that use
DEPTH_OFFSET.

What's New in IDL 6.0 ISURFACE

198

Chapter 3: New IDL Routines

Note
DEPTH_OFFSET has no effect unless the value of the STYLE keyword is2 or 6
(Filled or LegoFilled).

EXTENDED_LEGO

Set this keyword to force the iSurface tool to display the last row and column of data
when lego display styles are selected.

HIDDEN_LINES

Set this keyword to draw point and wireframe surfaces using hidden line (point)
removal. By default, hidden line removal is disabled.

HIDE

Set this keyword to a boolean value indicating whether this object should be drawn:
e 0= Draw graphic (the default)
e 1=Donot draw graphic
IDENTIFIER

Set thiskeyword to anamed IDL variable that will contain theiTool D for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

LINESTYLE

Set this keyword to indicate the line style that should be used to draw the surface
lines. The value can be either an integer value specifying apre-defined line style, or a
two-element vector specifying a stippling pattern.

To use apre-defined line style, set the LINESTY LE keyword equal to one of the
following integer values:

« 0= Solid line (the default)

¢ 1 =dotted
e 2=dashed
e 3 =dashdot

ISURFACE What's New in IDL 6.0

Chapter 3: New IDL Routines 199

¢ 4 =dash dot dot dot
¢ 5=longdash
¢ 6=nolinedrawn

To define your own stippling pattern, specify atwo-element vector [repeat, bitmask],
where repeat indicates the number of times consecutive runs of 1'sor 0'sin the
bitmask should be repeated. (That is, if three consecutive 0's appear in the bitmask
and the value of repeat is 2, then the line that is drawn will have six consecutive bits
turned off.) The value of repeat must be in the range 1 < repeat < 255.

The bitmask indicates which pixels are drawn and which are not along the length of
the line. Bitmask is most conveniently specified as a 16-bit hexadecimal value.

For example, LI NESTYLE = [2, ' FOFOQ' X] describesadashed line (8 bitson, 8
bits off, 8 bits on, 8 bits off).

LOCATION

Set this keyword to a two-element vector of the form [, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The nameis
used for tool-related display purposes only—as the root of the hierarchy shown in the
Tool Browser, for example.

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword equal to one to place the graphical output for the command in the
current tool. If no current tool exists, anew tool is created.

RGB_TABLE

Set this keyword to a two-dimensional array containing RGB triplets defining the
colorsto be used in a color indexed texture image or by vertex colors. The values
should be within the range of 0 < value< 255. The array must be a3 by N array
where m must not exceed 256.

What's New in IDL 6.0 ISURFACE

200

Chapter 3: New IDL Routines

SHADING

Set this keyword to an integer representing the type of shading to use if STYLE isset
to 2 (Filled).

e 0=Flat (default): The color has a constant intensity for each face of the
surface, based on the normal vector.

e 1= Gouraud: The colors are interpolated between vertices, and then along
scanlines from each of the edge intensities.

Gouraud shading may be slower than flat shading, but results in a smoother
appearance.

SHOW_SKIRT
Set this keyword to enable skirt drawing. The default isto disable skirt drawing.
SKIRT

Set this keyword to the Z value at which a skirt is to be defined around the array. The
Z vaueisexpressed in data units; the default is 0.0. If askirt is defined, each point on
the four edges of the surface is connected to a point on the skirt which hasthe given Z
value, and the same X and Y values as the edge point. In addition, each point on the
skirt is connected to its neighbor. The skirt valueisignored if skirt drawing is
disabled (see SHOW_SKIRT above). IDL converts, maintains, and returns this data
as double-precision floating-point.

STYLE

Set this keyword to and integer value that indicates the style to be used to draw the
surface. Valid values are:

« 0=Points
¢ 1=Wiremesh
» 2 =Filled (the default)

e 3=RuledXz
e 4=RuledYZ
e 5=lego

e 6= LegoFilled: for outline or shaded and stacked histogram-style plots.

ISURFACE What's New in IDL 6.0

Chapter 3: New IDL Routines 201

TEXTURE_ALPHA

Set the keyword to atwo-dimensional array containing the alpha channel of an image
to be used as atexture image. Use of this keyword requiresthat TEXTURE_RED,
TEXTURE_GREEN, and TEXTURE_BLUE be set to arrays of identical size and

type.
TEXTURE_BLUE

Set the keyword to atwo-dimensional array containing the blue channel of an image
to be used as atexture image. Use of this keyword requiresthat TEXTURE_RED and
TEXTURE_GREEN be set to arrays of identical size and type.

TEXTURE_GREEN

Set the keyword to atwo-dimensional array containing the green channel of animage
to be used as atexture image. Use of this keyword requiresthat TEXTURE_RED and
TEXTURE_BLUE be set to arrays of identical size and type.

TEXTURE_HIGHRES

Set this keyword to cause texture tiling to be used as necessary to maintain the full
pixel resolution of the original texture image.

Setting this keyword isrecommended if IDL isrunning on modern 3-D hardware and
resolution loss due to downscaling becomes problematic. If not set, and the texture
map is larger than the maximum resolution supported by the 3-D hardware, the
texture is scaled down to the maximum resolution supported by the 3-D hardware on
your system. The default valueisO.

TEXTURE_IMAGE

Set this keyword to an array containing an image to be texture mapped onto the
surface. If this keyword is omitted or set to anull object reference, no texture map is
applied and the surface isfilled with the color specified by the COLOR or
VERTEX_COLORS property. Theimage array can be atwo-dimensional array of
color indexes or athree-dimensional array specifying RGB values at each pixel (3x n
xm,nx3xm,ornxmx 3). Setting TEXTURE_IMAGE to athree-dimensional
array contains an alphachannel (4xnxm,nx 4x m, or nx mx 4) allows you to
create a transparent i Surface object. The TEXTURE_IMAGE keyword will override
any values passed to TEXTURE_RED, TEXTURE_GREEN, TEXTURE_BLUE, or
TEXTURE_ALPHA.

What's New in IDL 6.0 ISURFACE

202

ISURFACE

Chapter 3: New IDL Routines

TEXTURE_INTERP

Set this keyword to a nonzero value to indicate that bilinear sasmpling isto be used
with texture mapping. The default method is hearest-neighbor sampling.

TEXTURE_RED

Set the keyword to atwo-dimensional array containing the red channel of animageto
be used as atexture image. Use of this keyword requires that TEXTURE_GREEN
and TEXTURE_BLUE be set to arrays of identical size and type.

THICK

Set this keyword to avalue between 1.0 and 10.0, specifying the line thickness to use
to draw surface lines, in points. The default is 1.0 points.

TITLE

Set this keyword to a string to specify atitle for the tool. Thetitle is displayed in the
title bar of the tool.

USE_TRIANGLES

Set this keyword to force the iSurface tool to use triangles instead of quadsto draw
the surface and skirt.

VERT_COLORS

Set this keyword to a vector, two-dimensional array of equal sizeto Z, or atwo-
dimensional array containing RGB triplets representing colors to be used at each
vertex. If thiskeyword is set to avector or atwo-dimensional array of equal sizeto Z,
these values are indices into a color table that can be specified by the RGB_TABLE
keyword. If the RGB_TABLE keyword is not set, agrayscale color is used. If more
vertices exist than elementsin VERT _COLORS, the elements of VERT _COLORS
are cyclically repeated. If this keyword is omitted, the surface is drawn in the color
specified by the COLOR keyword or the default color.

VIEW_GRID

Set this keyword to atwo-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword isonly used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID isignored).

What's New in IDL 6.0

Chapter 3: New IDL Routines 203

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view isthe last onein the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

[XYZ]MAJOR

Set this keyword to an integer representing the number of magjor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.

What's New in IDL 6.0 ISURFACE

204

Chapter 3: New IDL Routines

[XYZ]SUBTICKLEN

Set this keyword to afloating-point scale ratio specifying the length of minor tick
marks relative to the length of mgjor tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the major tick mark.

[XYZ]JTEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
valueis|O0, 0, 0] (black).

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

* 0=Helvetica

e 1=Courier

e 2=Times

e 3=Symbol

e 4 =Hershey
[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 points.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

* 0=Normal
« 1=Bold
¢ 2=ltdic

« 3=Boldltaic

ISURFACE What's New in IDL 6.0

Chapter 3: New IDL Routines 205

[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of afunction to be used to format the tick mark labels. If an
array is provided, each string corresponds to alevel of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it isinterpreted as the name of a
callback function to be used to generate tick mark |abels.

If TICKUNITS are not specified:

e Thecallback function is called with three parameters: Axis, Index, and Value,
where:

« Axisisthe axis number: O for X axis, 1 for Y axis, 2 for Z axis
¢ Indexisthetick mark index (indices start at 0)

¢ Valueisthe data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

*« AXxis, Index, and Value are the same as described above.

* Level istheindex of the axislevel for the current tick value to be labeled.
(Level indicesstart at 0.)

Used with the LABEL _DATE function, this property can easily create axes with
date/time labels.

[XYZ]TICKINTERVAL

Set this keyword to afloating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XY Z]MAJOR). The value of
this keyword takes precedence over the value set for the [XY Z]MAJOR keyword.

For example, if TICKUNITS=['S, 'H', 'D"], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

What's New in IDL 6.0 ISURFACE

206

Chapter 3: New IDL Routines

[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

¢ 0=Theaxisline, major tick marks and tick labels are al included. Minor tick
marks only appear on the first level of the axis. Thisisthe default tick layout
style.

e 1=0nly thelabels for the mgjor tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

e 2=Eachmajor tick interval isoutlined by abox. Thetick labels are positioned
within that box (left-aligned). For the first axislevel only, the major and minor
tick marks will also be drawn.

Note
For al tick layout styles, at |east one tick label will appear on each level of the axis
(even if no mgjor tick marks fall along the axisline). If there are no major tick
marks, the singletick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each mgjor tick
mark, measured in data units. The recommended, and default, tick mark length is0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axistick labeling. If more than one unit is provided, the axiswill be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

ISURFACE What's New in IDL 6.0

Chapter 3: New IDL Routines

Valid unit strings include:

"Numeric"
"Years'
"Months"
"Days’
"Hours"
"Minutes"
"Seconds’

207

"Time" - Use this value to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon

the range of values covered by the axis.

""- Use the empty string to indicate that no tick units are being explicitly set.
Thisimpliesthat asingle axis level will be drawn using the "Numeric" unit.

Thisisthe default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value stringsis also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS ='Days).

Note

Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,

maintains, and returns this data as double-precision floating-point.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis.

What's New in IDL 6.0

ISURFACE

208

Chapter 3: New IDL Routines

ZERO_OPACITY_SKIP

Set this keyword to gain finer control over the rendering of textured surface pixels
(texels) with an opacity of 0 in the texture map. Texels with zero opacity do not affect
the color of a screen pixel since they have no opacity. If this keyword is set to 1, any
texelsare “skipped”’ and not rendered at all. If thiskeyword is set to zero, the Z-buffer
is updated for these pixels and the display image is not affected as noted above. By
updating the Z-buffer without updating the display image, the surface can be used as
aclipping surface for other graphics primitives drawn after the current graphics
object. The default value for this keyword is 1.

Note
This keyword has no effect if no texture map isused or if the texture map in use

does not contain an opacity channel.

Examples

In the IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported viathe File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data viathe iTool file menu, refer to “ Data Import Methods’ in Chapter 2
of theiTool User’s Guide manual.

Example 1

ISURFACE

This example shows how to use the IDL Command Lineto load datainto the iSurface
tool.

At the IDL Command Line, enter:
file = FILEPATH(' surface.dat', $

SUBDI RECTORY = ['exanples', 'data'])
data = READ BI NARY(file, DATA DIMS = [350, 450], DATA TYPE = 2, $
ENDI AN = "little")

| SURFACE, data, TITLE = 'Maroon Bells Elevation', $
COLOR = [255, 128, 0]

Place atitle on the elevation axis of your plot by selecting the axis, right-clicking to
display the context menu, selecting Propertiesto display the property sheet, and
typing El evati on (nj intheTitlefield.

What's New in IDL 6.0

Chapter 3: New IDL Routines 209

Use the Operations — Statistics... option to display the iTools Statistics dial og.
Within this dialog, observe the Z value's Maxi num whichis4241 at[29, 253].
Closethe iTools Statistics dialog by selecting File — Close.

Annotate your plot by selecting the Text Annotation tool, clicking near the top of the
highest peak in the display, and typing Hi ghest Poi nt (4241 m). Draw aline
annotation between the text annotation and the highest peak on the surface.

The following figure displays the output of this example:

Highest Point (4%41 m)

S

Figure 3-11: Maroon Bells iSurface Example

Example 2
This example shows how to use the File — Open command to load binary data into
the iSurface tool.
At the IDL Command Line, enter:
| SURFACE

Select File — Open to display the Open dialog, then browse to find
i denmosur f. dat intheexanpl es/ dat a directory intheIDL distribution, and click
Open.

What's New in IDL 6.0 ISURFACE

210

ISURFACE

Chapter 3: New IDL Routines

The Binary Template wizard is displayed. In the Binary Template, change File'sbyte
orderingtoLittl e Endi an. Then, click New Field, and enter the following
information in the New Field dialog:

* Field Name: dat a (or a name of your choosing)
e Type Float (32 bit)

¢ Number of Dimensions. 2

* 1st Dimension Size: 200

e 2nd Dimension Size: 200

Click OK to close the New Field dialog and the Binary Template dialog, and the
surface is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Insert a contour onto the surface by clicking the Surface Contour button on the
toolbar, then clicking and dragging on the surface to position the contour at the
desired height.

The following figure displays the output of this example:

Figure 3-12: Binary Surface Data iSurface Example

What's New in IDL 6.0

Chapter 3: New IDL Routines 211

Example 3

This example shows how to usethe File — Import command to load ASCII datainto
the i Surface tool.

At the IDL Command Line, enter:
| SURFACE
Select File — Import to display the IDL Import Data wizard.
1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browsetofindi rreg_gri dl. t xt inthe
exanpl es/ dat a directory in the IDL distribution, and click Next>>.

3. At Step 3, select Surface and click Finish.

Then, the ASCII Template wizard is displayed.
1. At Step 1, click Next>> to accept the displayed Data Type/Range definitions.
2. At Step 2, click Next>> to accept the displayed Delimiter/Fields definitions.
3. At Step 3, click Finish to accept the displayed Field Specifications.

Note
For more information on using the ASCII Template to import data, see “Using the
ASCII_TEMPLATE Function” in Chapter 14 of the Using IDL manual.

At the iTool’s Create Visualization window, you have the option of launching the
Gridding wizard or not creating a visualization. Choose L aunch the gridding
wizard and click OK.

4. At Step 1, click Next>> to accept the interpolation of data values and
locations.

5. At Step 2, click Next>> to accept the dimensions, start and spacing.

6. At Step 3, select I nver se Distance as the gridding method, click Preview to
preview the possible results, and click Finish to display the surface.

Double-click the surface to display the Properties sheet, and change the Fill shading
setting from Fl at to Gour aud.

Use the Rotate tool on the Toolbar to rotate the surface dlightly forward to better
display the surface convolutions.

What's New in IDL 6.0 ISURFACE

212 Chapter 3: New IDL Routines

The following figure displays the output of this example.

Figure 3-13: ASCII Surface Data iSurface Example

Version History

Introduced: 6.0

ISURFACE What's New in IDL 6.0

Chapter 3: New IDL Routines 213

ITCURRENT

The ITCURRENT procedureis used to set the current tool in the IDL Intelligent
Tools system. This routine is used with the identifier of the tool to makeit current in
the system. If the identifier is valid, the specified tool becomes current.

When atool is set as current, the visible display or the focus state of the tool does not
change. Only the internal setting of the current tool changes.

Besides using this procedure to set the current tool, atool is made current when it is
created or when it is placed in focus in the current windowing system.

Thisroutine iswritten in the IDL language. Its source code can be found in thefile
itcurrent.prointhelib/itool s subdirectory of the IDL distribution.

Syntax

ITCURRENT, iToolID
Arguments

iToollD

Theidentifier of the existing iTool to be set as current.
Keywords

None.
Example

Enter the following at the IDL Command Line:

| PLOT, | DENTIFIER = Pl otl| D1
currentl = | TGETCURRENT()
PRI NT, 'The current tool is ', currentl

AniPlot tool is created, and the newly created iPlot tool becomes the current tool.
Output similar to the following appears in the IDL Output Log:

The current tool is /TOOLS/ | PLOT_8

What's New in IDL 6.0 ITCURRENT

214

Chapter 3: New IDL Routines

Enter the following at the IDL Command Line:

| PLOT, | DENTIFIER = Pl otlD2
current2 = | TGETCURRENT()
PRI NT, 'The current tool is ', current2

A second iPlot tool is created, and this newly created iPlot tool becomes the current
tool. Output similar to the following appearsin the IDL Output Log:

The current tool is /TOOLS/ I PLOT_9
Enter the following at the IDL Command Line:

| SURFACE, | DENTI FI ER = Surfacel D1
current3 = | TGETCURRENT()
PRI NT, 'The current tool is ', current3

AniSurfacetool is created, and the newly created iSurface tool becomes the current
tool. Output similar to the following appearsin the IDL Output Log:

The current tool is /TOOLS/ | SURFACE 5
Enter the following at the IDL Command Line:

| TCURRENT, Pl otl D1

current = | TGETCURRENT()

PRI NT, 'The current tool is ', current
END

TheiPlot tool created at the beginning of the example (PlotiD1) becomes the current
tool. Output similar to the following appearsin the IDL Output Log:

The current tool is /TOOLS/ I PLOT_8

Note that the system ID of the current tool (IPLOT_8) isthe same as that of the
current tool at the beginning of the exercise.

Version History

Introduced: 6.0

See Also

ITDELETE, ITGETCURRENT, ITRESET

ITCURRENT What's New in IDL 6.0

Chapter 3: New IDL Routines 215

ITDELETE

The ITDELETE procedure is used to delete atool inthe IDL Intelligent Tools
system. If avalid identifier is provided, the tool represented by the identifier is
destroyed. If no identifier is provided, the current tool is destroyed.

When atool is destroyed, all resources specific to that tool are released and the tool
ceases to exist.

Thisroutine iswritten in the IDL language. Its source code can be found in thefile
itdel ete.prointhelib/it ool s subdirectory of the IDL distribution.

Syntax
ITDELETE[, iToolID]
Arguments

iToollD

This optional argument contains the identifier for the specific iTool to delete. If not
provided, the current tool is destroyed.

Keywords
None.
Example

Enter the following at the IDL Command Line:

| PLOT, | DENTIFIER = PlotlD1
| SURFACE, | DENTIFI ER = Surfacel D1

Two tools are created: an iPlot tool and an iSurface tool.

Next, enter the following at the IDL Command Line:
| TDELETE, plotlID1

TheiPlot tool is deleted, leaving only the iSurface tool.

What's New in IDL 6.0 ITDELETE

216 Chapter 3: New IDL Routines

Version History
Introduced: 6.0
See Also

ITCURRENT, ITGETCURRENT, ITRESET

ITDELETE What's New in IDL 6.0

Chapter 3: New IDL Routines 217

ITGETCURRENT

The ITGETCURRENT function is used to get the identifier of the current tool in the
IDL Intelligent Tools system.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
itgetcurrent.prointhelib/itool s subdirectory of the IDL distribution.

Syntax
Result = ITGETCURRENT()

Return Value

Returns the identifier of the current tool in the iTool system. If no tool exists, an
empty string (" ') isreturned.

Arguments
None.

Keywords
None.

Example

The following example line of code creates a plot tool:
| PLOT, SI N(FI NDGEN(361)*! DTOR), COLOR = [0, 0, 255], THICK = 2

The resulting plot tool contains a blue sine function, with aline thickness of 2. To
overplot a cosine function on this display, the following lines of code are used:

i dSin = | TGETCURRENT()
| PLOT, COS(FI NDGEN(361)*! DTOR), COLOR = [0, 255, 0], THICK = 2, $
OVERPLOT = i dSin

What's New in IDL 6.0 ITGETCURRENT

218 Chapter 3: New IDL Routines

However, it is not necessary to use ITGETCURRENT to retrieve the current tool for
overplotting. The following method is also possible because the creation of a new
tool causesit to be set as current in the system. In this scenario, the commands to
generate the same display are:

| PLOT, SI N(FI NDGEN(361)*! DTOR), COLOR

| PLOT, COS(FI NDGEN(361) *! DTOR), COLOR
| OVERPLOT

[0, 0, 255], THICK
[0, 255, 0], THICK

Version History
Introduced: 6.0
See Also

ITCURRENT, ITDELETE, ITRESET

ITGETCURRENT What's New in IDL 6.0

Chapter 3: New IDL Routines 219

ITREGISTER

The ITREGISTER procedure is used to register tool object classes or other iTool
functionality with the IDL Intelligent Tools system.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
itregister.prointhelib/itool s subdirectory of the IDL distribution.

Syntax

ITREGISTER, Name, ItemName [, TYPES=string] [, /Ul_PANEL]
[, /UI_SERVICE] [, /VISUALIZATION]

Arguments

Name

A string containing the name used to refer to the associated class once registration is
completed. Subsequent calls to create items of this type will use this name to identify
the associated class.

[temName

A string containing the class name of the object class or user interface routine that is
to be associated with Name. When an item of name Name is requested from the
system, an object of this classis created or the specified routine is called.

Keywords

Note
Keywords supplied in the call to ITREGISTER but not listed here are passed
directly to the underlying objects' registration routines.

TYPES

This keyword is only used in conjunction with the Ul_PANEL keyword.

Set this keyword equal to a string or string array containing iTool types with which
the Ul panel should be associated. When the registered type of a Ul panel matches
the registered type of an iTool, the panel will be displayed as part of the iTool’s
interface.

What's New in IDL 6.0 ITREGISTER

220 Chapter 3: New IDL Routines

UI_PANEL

Set this keyword to indicate that aUI panel is being registered with the system. When
this keyword is set, the value of Name is the string used to refer to the panel and
ItemName is the routine that should be called when the panel is created.

To specify that the Ul panel is associated with a particular iTool or iTools, set the
TYPES keyword to the iTool types that should expose this panel.

Ul_SERVICE

Set this keyword to indicate that a Ul service is being registered with the system.
When this keyword is set, the value of Name is the string used to refer to the Ul
service and ItemName is the routine that should be called to execute the service.

VISUALIZATION

Set this keyword to indicate that a visualization is being registered with the system.
When this keyword is set, the value of Name is the string used to refer to the
visualization type, and ItemName is the name of the visualization type's class
definition routine.

Examples

Suppose you have an iTool class definition file named myTool __defi ne. pro,
located in adirectory included in IDL’s 'PATH system variable. Register this class
with the iTool system with the following command:

| TREG STER, 'MWy First Tool', 'nyTool"’

Tools defined by the my Tool class definition file can now be created by the i Tool
system by specifying the tool nameMy First Tool .

Similarly, suppose you have a user interface service defined in afile named
myUl Fi | eOpen. pro. Register this Ul service with the iTool system with the
following command:

| TREG STER, 'MWy File Open', 'nyU FileQuen', /U _SERVI CE

Finally, suppose you have a user interface panel defined in afile named

myPanel . pr o, and that you want this panel to be added to the user interface of
iToolsregistered with the TY PES property set to MYTOOL. Register this Ul panel with
the iTool system with the following command:

| TREG STER, ' My Panel', 'nyPanel', /U _PANEL, TYPES = ' MTOQ'

ITREGISTER What's New in IDL 6.0

Chapter 3: New IDL Routines 221

Version History
Introduced: 6.0
See Also

Chapter 5, “Creating an iTool” in the iTool Developer’s Guide manual.

What's New in IDL 6.0 ITREGISTER

222 Chapter 3: New IDL Routines

ITRESET

The ITRESET procedure resets the IDL iTools session. When called, al active tools
and overall system management is destroyed and associated resources rel eased.

This classiswrittenin the IDL language. Its source code can be found in the file
itreset.prointhelib/itools subdirectory of the IDL distribution.

Syntax
ITRESET[, /NO_PROMPT]
Arguments
None
Keywords
NO_PROMPT

Set this keyword to disable prompting the user before resetting the system. If this
keyword is set, the user is not presented with a prompt and the reset is performed
immediately.

Examples

TheiTool Data Manager system maintains your data during the entire IDL session,
unless ITRESET is used. This example shows how the data is maintained and how
ITRESET is used to clear theiTool Data Manager.

Read in plot dataand load it into an iPlot tool at the IDL Command Line:
file = FILEPATH(' dirty_sine.dat', $

SUBDI RECTORY = ['exanples', 'data'])
data = READ BI NARY(file, DATA DIMs = [256, 1])
| PLOT, data
Delete thistool with the ITDELETE procedure at the IDL Command Line:
| TDELETE

ITRESET What's New in IDL 6.0

Chapter 3: New IDL Routines 223

Read in surface data and load it into an iSurface tool at the IDL Command Line:

file = FILEPATH(' el evbin.dat', $

SUBDI RECTORY = ['exanples', 'data'])
data = READ BI NARY(file, DATA DI Ms = [64, 64])
| SURFACE, data

Use Window — Data M anager... to access the Data Manager Browser. The browser
contains both plot and surface parameters. Although theiPlot tool was deleted, its
data remains in the Data Manager. Click Dismiss.

Use File —» New — iPlot to create an empty iPlot toal. If you want to load the plot
datain the Data Manager into thistool, use I nsert — Visualization to access the
Insert Visualization dialog, which alows you to specify the plot data to be displayed.

At the IDL Command Line, enter:
| TRESET, /NO_PROVPT

Thetwo iTools are deleted and the data in the Data Manager isreleased. To verify the
datain released, create an empty iSurface tool at the IDL Command Line:

I SURFACE

Use Window — Data M anager... to access the Data Manager Browser. No data
appearsin the browser. The iTool Data Manger in empty. Click Dismiss.

At the IDL Command Line, enter:
| TRESET, /NO_PROVPT

Version History
Introduced: 6.0
See Also

ITCURRENT, ITDELETE, ITGETCURRENT

What's New in IDL 6.0 ITRESET

224

Chapter 3: New IDL Routines

IVOLUME

The IVOLUME procedure creates an iTool and associated user interface (Ul)
configured to display and manipulate volume data.

Note
If no arguments are specified, the IVOLUME procedure creates an empty Volume
tool.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
i vol ume. prointhelib/it ool s subdirectory of the IDL distribution.

Syntax

IVOLUME

IVOLUMEL, Volg[, Vol4][, Vol,, Vol 3]]

iTool Common Keywords: [, DIMENSIONS=[X, y]] [, IDENTIFIER=variable€]

[, LOCATION=[X, y]] [, NAME=string] [, OVERPLOT=iToolID] [, TITLE=string]
[, VIEW_GRID=[columns, rows]] [, /VIEW_NEXT] [. VIEW_NUMBER=integer]
[, {X]Y | Z} RANGE=[min, max]]

iTool Volume Keywords: [, /AUTO_RENDER]

[, RENDER_EXTENTS={0]|1|2}] [, RENDER_QUALITY={1]|2}]
[, SUBVOLUME=[xmin, ymin, zmin, Xmax, ymax, zmax]]

[, VOLUME_DIMENSIONS=[width, height, depth]]

[, VOLUME_LOCATION=[X, Y, 7]

Volume Object Keywords: [, AMBIENT=RGB vector]

[, BOUNDS=[xmin, ymin, zmin, xmax, ymax, zmax]] [, CLIP_PLANES=array]

[, COMPOSITE_FUNCTION={0|1|2]|3}] [, CUTTING_PLANES=array]

[, DEPTH_CUE=[zbright, zdim|] [, /HIDE] [, HINTS={0| 1| 2| 3}]

[, INTERPOLATE] [, /LIGHTING_MODEL] [, OPACITY_TABLEO=byte array of
256 elements] [, OPACITY_TABLE1=byte array of 256 elements]

[, RENDER_STEP=[x, Y, Z]] [, RGB_TABLEO=byte array of 256 by 3 or 3 by 256
elements] [, RGB_TABLE1=byte array of 256 by 3 or 3 by 256 elements]
[,/TWO_SIDED] [, /ZBUFFER] [, ZERO_OPACITY _SKIP={0]| 1}]

What's New in IDL 6.0

Chapter 3: New IDL Routines 225

Axis Object Keywords: [, {X |Y | Z}GRIDSTYLE={0|1|2|3|4|5]6}]
L{X]Y |Z}MAJOR=integer] [, {X | Y | Z} MINOR=integer]

[,{X|Y |Z}SUBTICKLEN=ratio] [, {X |Y | Z} TEXT_COLOR=RGB vector]
[L{X]|Y |Z}TICKFONT_INDEX={0|1]2]|3]|4}]

[,{X|Y | Z} TICKFONT_SIZE=integer]

[{X|Y |Z}TICKFONT_STYLE={0]|1]|2|3}]

[{X]|Y |Z} TICKFORMAT=string or string array]

[L{X]|Y |Z}TICKINTERVAL=value] [,{X | Y | Z} TICKLAYOUT={0| 1] 2}]
[,{X|Y |Z}TICKLEN=value] [, {X | Y | Z} TICKNAME-=string array]
[,{X]|Y |Z}TICKUNITS=string] [, {X | Y | Z} TICKVALUES=vector]
[,{X|Y | Z} TITLE=string]

Arguments

Note
The volume data provided in the Vol 5, Vol 1, Vol,, and Vol 3 arguments are scaled into
byte values (ranging from 0 to 255) with the BY TSCL function to facilitate using
the volume data as indices into the RGB and OPACITY tables. This scaling is done
for display purposes only; the iVolume tool maintains the original data as supplied
with the arguments for use in other operations. The minimum and maximum values
used by the BY TSCL function may be adjusted in the volume's property sheet. By
default, the tool uses the minimum and maximum values of all volume parameters
to uniformly byte-scale the data.

VOlo, VOll, V0|2, V0|3

A three-dimensional array of any numeric type containing volume data. Arrays of
strings, structures, object references, and pointers are not allowed. If more than one
volume is specified, they must all have the same dimensions.

The number of volumes present and the value of the COMPOSITE_FUNCTION
keyword determine how the volume datais rendered by the iVolume tool. The
number of volume arguments determine how the sr ¢ and sr cal pha valuesfor the
COMPOSITE_FUNCTION are computed:

* If Voly isthe only argument present, the values of sr ¢ and sr cal pha are
taken directly from the RGB and OPACITY tables, asindexed by each volume
data sample;

src = RGB_TABLEO[VOLO]
srcal pha = OPACI TY_TABLEO[VOLO]

What's New in IDL 6.0 IVOLUME

226 Chapter 3: New IDL Routines

» If Voly and Vol are the only arguments present, the two volumes are blended
together using independent tables:

src = (RGB_TABLEO[VOLO] *RGB_TABLEL[VOL1])/ 256
srcal pha = (OPACI TY_TABLEO[VOLO] * OPACI TY_TABLEL[VOL1])/ 256

» If al thearguments are present, Vol indexes the red channel of
RGB_TABLEDO, Vol indexes the green channel of RGB_TABLEOQ, and \Vol,
indexes the blue channel of RGB_TABLEO. The Vol3 argument indexes
OPACITY_TABLEQ:

src = (RGB_TABLE[VOLO, 0], RGB_TABLE[VOL1, 1], $
RGB_TABLE[VOL2, 2])/256
srcal pha = (OPACI TY_TABLEO[VOL3])/ 256.
Note
If al the arguments are present, the composite function cannot be set to the
average-intensity projection (COMPOSITE_FUNCTION = 3).

Keywords

Note
Because keywords to the IVOLUME routine correspond to the names of registered
properties of theiVolume tool, the keyword names must be specified in full, without
abbreviation.

AMBIENT

Use this keyword to set the color and intensity of the volume's base ambient lighting.
Color is specified as an RGB vector. The default is [255, 255, 255]. AMBIENT is
applicable only when LIGHTING_MODEL is set.

AUTO_RENDER

Set this keyword to 1 to always render the volume. The default is to not render the
volume each time the tool window is drawn.

BOUNDS

Set this keyword to a six-element vector of the form [Xqin, Ymin: Zmin' Xmaxe Ymax:
Znax]» Which represents the sub-volume to be rendered. This keyword is the same as
the SUBVOLUME keyword.

IVOLUME What's New in IDL 6.0

Chapter 3: New IDL Routines 227

CLIP_PLANES

Set this keyword to an array of dimensions [4, N] specifying the coefficients of the
clipping planes to be applied to this object. The four coefficients for each clipping
plane are of theform [A, B, C, D], where Ax + By + Cz+ D = 0. Portions of this
object that fall in the half space Ax + By + Cz+ D > 0 will be clipped. By default, the
value of this keyword isascalar (-1) indicating that no clipping planes are to be
applied.
Note
Clipping planes are equivalent to cutting planes (refer to the CUTTING_PLANES

keyword). The CUTTING_PLANES will be applied first, then the CLIP_PLANES
(until a maximum number of planesis reached).

Note
A window is only able to support alimited number of clipping planes. Some of
these clipping planes may already be in use by the tool to support specific data
display features. If the total number of clipping planes exceeds the limit, an
informational message is displayed.

COMPOSITE_FUNCTION

The composite function determines the value of a pixel on the viewing plane by
analyzing the voxels falling along the corresponding ray, according to one of the
following compoasiting functions:

e 0= Alpha(default): Alpha-blending. The recursive egquation
dest' = src * srcalpha + dest * (1 - srcal pha)
is used to compute the final pixel color.

¢ 1=MIP: Maximum intensity projection. The value of each pixel on the
viewing planeis set to the brightest voxel, as determined by its opacity. The
most opaque voxel’s color appropriation is then reflected by the pixel on the
viewing plane.

What's New in IDL 6.0 IVOLUME

228

Chapter 3: New IDL Routines

e 2= Alphasum: Alpha-blending. The recursive equation
dest' = src + dest * (1 - srcal pha)

is used to compute the final pixel color. This equation assumes that the color
tables have been pre-multiplied by the opacity tables. The accumulated values
can be no greater than 255.

« 3= Average: Average-intensity projection. The resulting image is the average
of al voxels along the corresponding ray.

Note
This option (COMPOSITE_FUNCTION = 3) is not supported for 4-channel

volumes.

CUTTING_PLANES

Set this keyword to afloating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficientsarein theform {{n, n,,
N, D}, ..} where (ny)X+(ny)Y+(n)Z+ D >0, and (X, Y, Z) are the voxel coordinates.
To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

DEPTH_CUE

IVOLUME

Set this keyword to atwo-element floating-point array [zbright, zdim]| specifying the
near and far Z planes between which depth cueing isin effect.

Depth cueing causes an object to appear to fade into the background color of the view
object with changes in depth. If the depth of an object is further than zdim (that is, if
the object’slocation in the Z direction is farther from the origin than the value
specified by zdim), the object will be painted in the background color.

Similarly, if the object is closer than the value of zbright, the object will appear in its
“normal” color. Anywhere in-between, the object will be a blend of the background
color and the object color. For example, if the DEPTH_CUE property isset to[-1, 1],
an object at the depth of 0.0 will appear as a 50% blend of the object color and the
view color.

The relationship between Zy,;gy and Z;, determines the result of the rendering:
* Zyright < Zgim' Rendering darkens with depth.
* Zyight > Zginm Rendering brightens with depth.
* Zyight = Zginy' Disables depth cueing.

What's New in IDL 6.0

Chapter 3: New IDL Routines 229

You can disable depth cueing by setting zyjgh = Zgim- The default is[0.0, 0.0].
DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the drawing area of the specific tool in device units. The minimum
width of the window correlates to the width of the menubar. The minimum window
height is 100 pixels.

HIDE

Set this keyword to a boolean value indicating whether the volume should be drawn:
e 0= Draw graphic (the default)
e 1=Donot draw graphic

HINTS

Set this keyword to specify one of the following acceleration hints:
¢ 0=Disablesall acceleration hints (default).

e 1= Enables Euclidean distance map (EDM) acceleration. This option
generates a volume map containing the distance from any voxel to the nearest
non-zero opacity voxel. The map is used to speed ray casting by allowing the
ray to jump over open spaces. It is most useful with sparse volumes. After
setting the EDM hint, the draw operation generates the volume map; this
process can take some time. Subsequent draw operations will reuse the
generated map and may be much faster, depending on the volume's sparseness.
A new map is not automatically generated to match changes in opacity tables
or volume data (for performance reasons). The user may force recomputation
of the EDM map by setting the HINTS property to 1 again.

e 2= Enablesthe use of multiple CPUs for volume rendering if the platforms
used support such use. If HINTSis set to 2, IDL will use all the available (up
to 8) CPUs to render portions of the volumein parallel.

« 3= Sdlectsthe two acceleration options described above.
IDENTIFIER

Set thiskeyword to anamed IDL variable that will contain theiTool D for the created
tool. This value can then be used to reference this tool during overplotting operations
or command-line-based tool management operations.

What's New in IDL 6.0 IVOLUME

230

Chapter 3: New IDL Routines

INTERPOLATE

Set this keyword to indicate that trilinear interpolation isto be used to determine the
datavalue for each step on aray. Setting this keyword improves the quality of images
produced, at the cost of more computing time. especially when the volume has low
resolution with respect to the size of the viewing plane. Nearest neighbor sampling is
used by default.

LIGHTING_MODEL

Set this keyword to use the current lighting model during rendering in conjunction
with alocal gradient evaluation.

Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxelsin alighted view, enabling light sources
increases the rendering time.

LOCATION

Set this keyword to atwo-element vector of the form [, y] to specify the location of
the upper left-hand corner of the tool relative to the display screen, in device units.

NAME

Set this keyword to a string to specify the name for this particular tool. The nameis
used for tool-related display purposes only—as the root of the hierarchy shown in the
Tool Browser, for example.

OPACITY_TABLEO

Set this keyword to a 256-element byte array to specify an opacity table for Vol if
Vol or Vol and Vol are present. If al the volume arguments are present, this
keyword represents the opacity of the resulting RGBA volume. A value of 0 indicates
complete transparency and a value of 255 indicates complete opacity. The default
tableisalinear ramp.

OPACITY_TABLE1

Set this keyword to a 256-element byte array to specify an opacity table for Vol
when Vol and Vol ; are present. A value of 0 indicates complete transparency and a
value of 255 indicates complete opacity. The default table is alinear ramp.

IVOLUME What's New in IDL 6.0

Chapter 3: New IDL Routines 231

OVERPLOT

Set this keyword to an iToolID to direct the graphical output of the particular tool to
the tool specified by the provided iToolID.

Set this keyword to 1 (one) to place the graphical output for the command in the
current tool. If no current tool exists, anew tool is created.

RENDER_EXTENTS

Set this keyword to draw a boundary around the rendered volume. The default
(RENDER_EXTENTS = 2) isto draw atranslucent boundary box. Possible values
for this keyword are:

¢ 0= Do not draw anything around the volume.
* 1= Draw awireframe around the volume.

+ 2 =Draw atranslucent box around the volume
RENDER_STEP

Set this keyword to athree element vector of the form [x, v, Z] to specify the stepping
factor through the voxel matrix. This keyword isonly valid if render quality is set to
high (RENDER_QUALITY = 2). The default render step is[1, 1, 1].

RENDER_QUALITY

Set this keyword to determine the quality of the rendered volume. The default
(RENDER_QUALITY =1) islow quality. Possible values for this keyword are:

¢ 1=Low - Rendersvolume with a stack of two-dimensional texture maps.

* 2 =High - Useray-casting rendering, see the COMPOSITE_FUNCTION for
more details.

RGB_TABLEO

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values to specify
acolor table for Vol if Voly or Vol and Vol are present. If al the arguments are
present, this keyword represents the RGB color values of all of these volumes. The
default isalinear ramp

RGB_TABLE1l

Set this keyword to a 3 by 256 or 256 by 3 byte array of RGB color values to specify
acolor table for Vol; when Vol and Vol are present. The default is alinear ramp.

What's New in IDL 6.0 IVOLUME

232

Chapter 3: New IDL Routines

SUBVOLUME

Set this keyword to a six-element vector of the form [Xin, Ymin: Zmin' Xmaxe Ymax
Zmax]» Which represents the sub-volume to be rendered. This keyword is the same as
the BOUNDS keyword.

TITLE

Set this keyword to a string to specify the title for this particular tool. Thetitleis
displayed in the title bar of the tool.

TWO_SIDED

Set this keyword to force the lighting model to use atwo-sided voxel gradient. The
two-sided gradient is different from the one-sided gradient (default) in that the
absolute value of the inner product of the light direction and the surface gradient is
used instead of clamping to 0.0 for negative values.

VIEW_GRID

Set this keyword to a two-element vector of the form [columns, rows] to specify the
view layout within the new tool. This keyword isonly used if a new tool is being
created (for example, if OVERPLOT, VIEW_NEXT, or VIEW_NUMBER are
specified then VIEW_GRID isignored).

VIEW_NEXT

Set this keyword to change the view selection to the next view following the
currently-selected view before issuing any graphical commands. If the currently-
selected view isthe last onein the layout, then /VIEW_NEXT will cause the first
view in the layout to become selected. This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

IVOLUME What's New in IDL 6.0

Chapter 3: New IDL Routines 233

VIEW_NUMBER

Set this keyword to change the currently-selected view to the view specified by the
VIEW_NUMBER before issuing any graphical commands. The view number starts
at 1, and corresponds to the position of the view within the graphics container (not
necessarily the position on the screen). This keyword isignored if no current tool
exists.

Note
The contents of the newly-selected view will be emptied unless/OVERPLOT is set.

VOLUME_DIMENSIONS

A 3-element vector specifying the volume dimensionsin terms of user data units. For
example, specifying [0.1, 0.1, 0.1] would cause the volume to be rendered into a
region that is 0.1 data units long on each side of the volume cube. If this parameter is
not specified, the volume is rendered into a region the same size as the number of
samples, with an origin of [0, O, O]. In this case, avolume with sample size of [20, 25,
20] would render into the region [0:19, 0:24, 0:19] in user data units. Use the
VOLUME_LOCATION keyword to specify a different origin.

VOLUME_LOCATION

A 3-element vector specifying the volume location in user data units. Use this
keyword to render the volume so that the first sample voxel appears at the specified
location, instead of at [0, O, 0], the default. Specify the location in terms of
coordinates after the application of the VOLUME_DIMENSIONS values. For
example, if the value of the VOLUME_DIMENSIONS keyword is[0.1, 0.1, 0.1] and
you want the volume to be centered at the origin, set the VOLUME_LOCATION
keyword to [-0.05, -0.05, -0.05].

[XYZ]MAJOR

Set this keyword to an integer representing the number of magjor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MAJOR equal to zero suppresses major tickmarks entirely.

[XYZ]MINOR

Set this keyword to an integer representing the number of minor tick marks. The
default is-1, specifying that IDL will compute the number of tickmarks. Setting
MINOR equal to zero suppresses minor tickmarks entirely.

What's New in IDL 6.0 IVOLUME

234

Chapter 3: New IDL Routines

[XYZ]RANGE

Set this keyword to the desired data range of the axis, a 2-element vector. The first
element is the axis minimum, and the second is the maximum.

[XYZ]SUBTICKLEN

Set this keyword to a floating-point scale ratio specifying the length of minor tick
marks relative to the length of major tick marks. The default is 0.5, specifying that the
minor tick mark is one-half the length of the magjor tick mark.

[XYZ]TEXT_COLOR

Set this keyword to an RGB value specifying the color for the axis text. The default
valueis|O0, 0, 0] (black).

[XYZ]TICKFONT_INDEX

Set this keyword equal to one of the following integers, which represent the type of
font to be used for the axis text:

¢ 0O=Helvetica

e« 1=Courier

e 2=Times

e 3=Symbol

e 4=Hershey
[XYZ]TICKFONT_SIZE

Set this keyword to an integer representing the point size of the font used for the axis
text. The default is 12.0 paints.

[XYZ]TICKFONT_STYLE

Set this keyword equal to one of the following integers, which represent the style of
font to be used for the axis text:

¢« 0=Norma
+ 1=Bold
« 2=ltdic

« 3=BoldItdic

IVOLUME What's New in IDL 6.0

Chapter 3: New IDL Routines 235

[XYZ]TICKFORMAT

Set this keyword to a string, or an array of strings, in which each string represents a
format string or the name of afunction to be used to format the tick mark labels. If an
array is provided, each string corresponds to alevel of the axis. The TICKUNITS
keyword determines the number of levels for an axis.

If the string begins with an open parenthesis, it is treated as a standard format string.
See “Format Codes” in Chapter 10 of the Building IDL Applications manual.

If the string does not begin with an open parenthesis, it isinterpreted as the name of a
callback function to be used to generate tick mark |abels.

If TICKUNITS are not specified:

e Thecallback function is called with three parameters: Axis, Index, and Value,
where:

« Axisisthe axis number: O for X axis, 1 for Y axis, 2 for Z axis
¢ Indexisthetick mark index (indices start at 0)

¢ Valueisthe data value at the tick mark (a double-precision floating point
value)

If TICKUNITS are specified:

The callback function is called with four parameters: Axis, Index, Value, and Level,
where:

*« AXxis, Index, and Value are the same as described above.

* Level istheindex of the axislevel for the current tick value to be labeled.
(Level indicesstart at 0.)

Used with the LABEL _DATE function, this property can easily create axes with
date/time labels.

[XYZ]TICKINTERVAL

Set this keyword to afloating-point scalar indicating the interval between major tick
marks for the first axis level. The default value is computed according to the axis
[XYZ]RANGE and the number of major tick marks ([XY Z]MAJOR). The value of
this keyword takes precedence over the value set for the [XY Z]MAJOR keyword.

For example, if TICKUNITS=['S, 'H', 'D"], and TICKINTERVAL = 30, then the
interval between major ticks for the first axis level will be 30 seconds.

What's New in IDL 6.0 IVOLUME

236

Chapter 3: New IDL Routines

[XYZ]TICKLAYOUT

Set this keyword to integer scalar that indicates the tick layout style to be used to
draw each level of the axis.

Valid values include:

¢ 0=Theaxisline, major tick marks and tick labels are al included. Minor tick
marks only appear on the first level of the axis. Thisisthe default tick layout
style.

e 1=0nly thelabels for the mgjor tick marks are drawn. The axis line, major
tick marks, and minor tick marks are omitted.

e 2=Eachmajor tick interval isoutlined by abox. Thetick labels are positioned
within that box (left-aligned). For the first axislevel only, the major and minor
tick marks will also be drawn.

Note
For al tick layout styles, at |east one tick label will appear on each level of the axis
(even if no mgjor tick marks fall along the axisline). If there are no major tick
marks, the singletick label will be centered along the axis.

[XYZ]TICKLEN

Set this keyword to a floating-point value that specifies the length of each mgjor tick
mark, measured in data units. The recommended, and default, tick mark length is0.2.
IDL converts, maintains, and returns this data as double-precision floating-point.

[XYZ]TICKNAME

Set this keyword to a string array of up to 30 elements that controls the annotation of
each tick mark.

[XYZ]TICKUNITS

Set this keyword to a string (or a vector of strings) indicating the units to be used for
axistick labeling. If more than one unit is provided, the axiswill be drawn in multiple
levels, one level per unit.

The order in which the strings appear in the vector determines the order in which the
corresponding unit levels will be drawn. The first string corresponds to the first level
(the level nearest to the primary axis line).

IVOLUME What's New in IDL 6.0

Chapter 3: New IDL Routines 237

Valid unit strings include:

¢ "Numeric"
* "Years'

* "Months'
* "Days'

* "Hours'

e "Minutes'
e "Seconds"

« "Time" - Usethisvalue to indicate that the tick values are time values; IDL
will determine the appropriate time intervals and tick label formats based upon
the range of values covered by the axis.

e ""-Usethe empty string to indicate that no tick units are being explicitly set.
Thisimpliesthat asingle axis level will be drawn using the "Numeric" unit.
Thisisthe default setting.

If any of the time units are utilized, then the tick values are interpreted as Julian
date/time values. Note that the singular form of each of the time value stringsis also
acceptable (e.g, TICKUNITS = 'Day' is equivalent to TICKUNITS ='Days).

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000hidd, respectively.

[XYZ]TICKVALUES

Set this keyword to a floating-point vector of data values representing the values at
each tick mark. If TICKVALUES is set to 0, the default, IDL computes the tick
values based on the axis range and the number of major ticks. IDL converts,
maintains, and returns this data as double-precision floating-point.

[XYZ]TITLE

Set this keyword to a string representing the title of the specified axis.

What's New in IDL 6.0 IVOLUME

238

IVOLUME

Chapter 3: New IDL Routines

ZBUFFER

Set this keyword to clip the rendering to the current Z-buffer and then update the
buffer.

ZERO_OPACITY_SKIP

Set this keyword to skip voxels with an opacity of 0. This keyword can increase the
output contrast of MIP (MAXIMUM_INTENSITY) projections by alowing the
background to show through. If this keyword is set, voxels with an opacity of zero
will not modify the Z-buffer. The default (not setting the keyword) continues to
render voxels with an opacity of zero.

Examples

Inthe IDL Intelligent Tools system, data can be imported from the IDL Command
Line (as described in Example 1), or data can be imported viathe File menu in the
iTool window (as described in Examples 2 and 3). For detailed information on
importing data viathe iTool file menu, refer to “ Data Import Methods® in Chapter 2
of theiTool User’s Guide manual.

Example 1

This example shows how to use the IDL Command Line to bring datainto the
iVolume tool.

At the IDL Command Line, enter:

file = FILEPATH(' cl ouds3d.dat', $

SUBDI RECTORY = ['exanples', 'data'])
RESTORE, file
| VOLUMVE, cl ouds

Derive an interval volume by selecting Oper ations — Volume — Interval Volume.
In the Interval Volume Value Selector dialog, change the minimum value to 0. 2 and
the Decimate: % of original surface dlider to 20, then click OK.

What's New in IDL 6.0

Chapter 3: New IDL Routines 239

The following figure displays the output of this example:

Figure 3-14: Cloud Interval Volume iVolume Example

Example 2

This example shows how to use theiTool File - Open command to load binary data
into the iVolume tool.

At the IDL Command Line, enter:
| VOLUVE

Select File — Open to display the Open dialog, then browseto find head. dat inthe
exanpl es/ dat a directory in the IDL distribution, and click Open.

In the Binary Template dialog, click New Field, and enter the following information
in the New Field dialog:

¢ Field Name: dat a (or aname of your choosing)
e Type Byte (unsigned 8-bits)
* Number of Dimensions: 3

+ 1st Dimension Size: 80

What's New in IDL 6.0 IVOLUME

240 Chapter 3: New IDL Routines

+ 2nd Dimension Size: 100
* 3rd Dimension Size: 57

Click OK to close the New Field dialog and the Binary Template dialog, and the
image is displayed.

Note
For more information on using the Binary Template to import data, see “Using the
BINARY_TEMPLATE Function” in Chapter 15 of the Using IDL manual.

Select Operations — Volume — | sosurface, and insert an isosurface with a value of
60, decimated to 20% of the original surface.

The following figure displays the output of this example:

Figure 3-15: Human Head MRI Isosurface iVolume Example

IVOLUME What's New in IDL 6.0

Chapter 3: New IDL Routines 241

Example 3

This example shows how to use the File — Import command to load binary datainto
the iVolume tool.

At the IDL Command Line, enter:
| VOLUVE
Select File — Import to display the IDL Import Data wizard.
1. At Step 1, select From a File and click Next>>.

2. At Step 2, under File Name:, browsetofindj et . dat intheexanpl es/ dat a
directory in the IDL distribution, and click Next>>.

3. At Step 3, select Volume and click Finish.

The Binary Template wizard is displayed. In the Binary Template, change File'sbyte
orderingtoLi ttl e Endi an. Then, click New Field, and enter the following
information in the New Field dialog:

¢ Field Name: dat a (or aname of your choosing)
e Type Byte (unsigned 8-hits)

e Number of Dimensions: 3

¢ 1st Dimension Size: 81

¢ 2nd Dimension Size: 40

¢ 3rd Dimension Size: 101

Click OK to closethe New Field dialog and the Binary Template dialog, and the
volume is displayed.

Select Operations — Volume — I mage Plane to display a planein the x-direction.
Double-click on the plane to access its properties through the property sheet. Change
the Orientation setting to Z. You can drag the image to see it at different z values by
clicking on the edge of the image plane.

What's New in IDL 6.0 IVOLUME

242

Chapter 3: New IDL Routines

The following figure displays the output of this example:

100

80

60

*> 40
<20

1<

25

\\\‘\'\\\‘\'\\\\\\\‘\\\\\

Figure 3-16: Plasma Jet Image Plane iVolume Example

Example 4

IVOLUME

This example shows how to use a second volume argument to cut away a section of
the first volume argument.

First, load the MRI head datainto IDL. At the IDL Command Line, enter:

file = FILEPATH(' head. dat', SUBDI RECTORY = ['exanples', 'data'])
dat a0 = READ BI NARY(file, DATA DI Ms = [80, 100, 57])

Then, create the second volume that will cut away the upper left corner of the head.
At the IDL Command Line, enter:

datal = BYTARR(80, 100, 57) + 1B
datal[0:39, *, 28:56] = OB

Derive the color and opacity tables for the second volume. At the IDL Command
Line, enter:

rgbTabl el = [[BYTARR(256)], [BYTARR(256)], [BYTARR(256)]]
rgbTabl el[1, *] = [255, 255, 255]

opaci tyTabl el = BYTARR(256)

opaci tyTabl el[1] = 255

What's New in IDL 6.0

Chapter 3: New IDL Routines 243

Now, display the two volumes. At the IDL Command Line, enter:

| VOLUVE, data0O, datal, RGB _TABLEl = rgbTablel, $
OPACI TY_TABLE1 = opacityTabl el, /AUTO _RENDER

The following figure displays the output of this example:

Figure 3-17: Cut Away iVolume Example

Example 5
This example shows how to use al the volume arguments to display an RGB (Red,
Green, Blue) volume.

First, create the volumes to contain primary colors (black, red, green, blue, yellow,
cyan, magenta, and white) in each corner. At the IDL Command Line, enter:

vol 0 = BYTARR(32, 32, 32)
vol 1 = BYTARR(32, 32, 32)
vol 2 = BYTARR(32, 32, 32)
vol 3 = BYTARR(32, 32, 32)
vol 0[0: 15, *, *] = 255
vol 1[*, 0:15, *] = 255
vol 2[*, *, 0:15] = 255

vol 3[*, *, *] = 128

What's New in IDL 6.0 IVOLUME

244 Chapter 3: New IDL Routines

Then, derive the color and opacity tables. At the IDL Command Line, enter:

rgbTabl e = [[BYTARR(256)], [BYTARR(256)], [BYTARR(256)]]
opaci t yTabl e = BI NDGEN(256)

Now, display the two volumes. At the IDL Command Line, enter:

I VOLUVE, vol 0, vol1, vol2, vol3, RGB TABLEO = rgbTable, $
OPACI TY_TABLEO = opacityTabl e, /AUTO RENDER

The following figure displays the output of this example:

Figure 3-18: RGB iVolume Example

Note
The white corner of this example volume is actually gray to distinguish it from the
white background.

Version History

Introduced: 6.0

IVOLUME What's New in IDL 6.0

Chapter 3: New IDL Routines 245

LOGICAL_AND

The LOGICAL_AND function performs alogical AND operation on its arguments.
It returns True (1) if both of its arguments are non-zero (non-NULL for strings and
heap variables), or False (0) otherwise.

The LOGICAL_AND function is similar to the AND operator, except that it
performs alogical “and” rather than a bitwise “and” on its arguments.

Note
LOGICAL_AND awaysreturns either O or 1, unlike the AND operator, which
performs a bitwise AND operation on integers, and returns one of the two
arguments for other types.

Unlike the && operator, LOGICAL_AND accepts multi-element arrays asits
arguments. In addition, where the & & operator short-circuitsif it can determine the
result by evaluating only the first argument, all arguments to afunction are always
evaluated.

Syntax
Result = LOGICAL_AND(Argl, Arg2)
Return Value

Integer zero (false) or one (true) if both arguments are scalars, or an array of zeroes
and onesiif either argument is an array.

Arguments
Argl, Arg2

The expressions on which the logical AND operation isto be carried out. The
arguments can be scalars or arrays of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU

What's New in IDL 6.0 LOGICAL_AND

246 Chapter 3: New IDL Routines

system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of thisroutine. See Appendix D, “Thread Pool
Keywords’ for details.

Example

At the IDL Command line, enter:

PRINT, LOG CAL_AND(2,4), LOG CAL_AND(2,0), LOG CAL_AND(O,4), $
LOG CAL_AND(0, 0)

IDL Prints:
1 0 0 O

Version History
Introduced: 6.0

See Also

“Logical Operators’ in the Building IDL Applications manual, “ Bitwise Operators’
in the Building IDL Applications manual, LOGICAL_OR, LOGICAL_TRUE

LOGICAL_AND What's New in IDL 6.0

Chapter 3: New IDL Routines 247

LOGICAL_OR

The LOGICAL_OR function performs alogical OR operation on its arguments. It
returns True (1) if either of its arguments are non-zero (non-NULL for strings and
heap variables), and False (0) otherwise.

The LOGICAL_OR function is similar to the OR operator, except that it performs a
logical “or” rather than a bitwise “or” on its arguments.

Note
LOGICAL_OR always returns either 0 or 1, unlike the OR operator, which
performs a bitwise OR operation on integers, and returns one of the two arguments
for other types.

Unlikethe| | operator, LOGICAL_OR accepts multi-element arrays asits
arguments. In addition, wherethe | | operator short-circuitsif it can determine the
result by evaluating only the first argument, all arguments to afunction are always
evaluated.

Syntax
Result = LOGICAL_OR(Argl, Arg2)
Return Value

Integer zero (false) or one (true) if both operands are scalars, or an array of zeroes and
onesif either operand is an array.

Arguments
Argl, Arg2

The expressions on which the logical OR operation isto be carried out. The
arguments can be scalars or arrays of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU

What's New in IDL 6.0 LOGICAL_OR

248 Chapter 3: New IDL Routines

system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of thisroutine. See Appendix D, “Thread Pool
Keywords’ for details.

Example

At the IDL Command Line, enter:

PRI NT, LOG CAL_OR(2,4), LOd CAL_OR(2,0), LOG CAL_CR(0,4), $
LOG CAL_OR(0, 0)

IDL Prints:
1 1 1 o0

Version History
Introduced: 6.0

See Also

“Logical Operators’ in the Building IDL Applications manual, “ Bitwise Operators’
in the Building IDL Applications manual, LOGICAL_AND, LOGICAL_TRUE

LOGICAL_OR What's New in IDL 6.0

Chapter 3: New IDL Routines 249

LOGICAL_TRUE

The LOGICAL_TRUE function returns True (1) if its arguments are non-zero (non-
NULL for strings and heap variables), and False (0) otherwise.

Note
For a given argument, the value returned by LOGICAL_TRUE is the opposite of
the value returned by the ~ operator.

Syntax
Result = LOGICAL_TRUE(Arg)
Return Value

Integer zero (false) or one (true) if the argument is a scalar, or an array of zeroes and
onesif the argument is an array.

Arguments

Arg

The expression on which the logical truth evaluation isto be carried out. The
argument can be ascalar or an array of any type other than structure.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL's thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by CPU for asingleinvocation of thisroutine. See Appendix D, “Thread Pool
Keywords’ for details.

What's New in IDL 6.0 LOGICAL_TRUE

250 Chapter 3: New IDL Routines

Example

At the IDL Command Line, enter:

PRI NT, LOG CAL_TRUE(2), LOG CAL_TRUE(O0)
IDL Prints:

1 0

Version History
Introduced: 6.0
See Also
“Logical Operators’ in the Building IDL Applications manual, “ Bitwise Operators’

in the Building IDL Applications manual, KEYWORD_SET, LOGICAL_AND,
LOGICAL_OR

LOGICAL_TRUE What's New in IDL 6.0

Chapter 3: New IDL Routines 251

PATH_CACHE

The PATH_CACHE procedure is used to control IDL’s use of the path cache. By
default, as IDL searches directories included in the 'PATH system variable for . pr o
or . sav filesto compile, it creates an in-memory list of all . pro and . sav files
contained in each directory. When IDL later searchesfor a. pro or . sav file, before
attempting to open the file in a given directory, IDL checks the path cache to
determine whether the directory has aready been cached. If the directory isincluded
in the cache, IDL uses the cached information to determine whether the file will be
found in that directory, and will only attempt to open thefile there if the cachetellsit
that the file exists. By eliminating unnecessary attempts to open files, the path cache
speeds the path searching process.

The path cache is enabled by default, and in almost all cases its operationis
transparent to the IDL user, save for the boost in path searching speed it provides.
Because the cache automatically adjusts to changes made to IDL's path, use of
PATH_CACHE should not be necessary in typical IDL operation. It is provided to
allow complete control over the details of how and when the caching operation is
performed.

¢ For information on when the path cache is not used, see “ Situationsin which
IDL will not use the Path Cache” on page 253.

e For information on disabling the path cache, see “Disabling the Path Cache”
on page 254.

Note
Prior to IDL 6.0, IDL did not use a path cache. Aside from the improvement in
performance, the behavior of IDL with the path cache isidentical to that without in
almost al cases. Therare casesin which it differs, and options for disabling its use,
are discussed in “Options for Avoiding Use of the Path Cache” on page 255.

About the Path Cache

Thefirst time an IDL session attemptsto call afunction or procedure written in the
IDL language, it must locate and compile the file containing the code for that routine.
The file containing the routine must have the same name as the routine, with either a
. proora. sav extension. After trying to open the file in the user’s current working
directory, IDL will attempt to open the file in each of the directorieslisted in the
I'PATH system variable, in the order specified by 'PATH. The search stops when afile
with the desired name is found or no directoriesremain in |PATH.

What's New in IDL 6.0 PATH_CACHE

252

Chapter 3: New IDL Routines

By default, IDL maintains an in-memory cache of the locations of . pro and. sav
files stored in directories included in the 'PATH system variable. The path cacheis
built automatically during normal operation, as DL searches the directories specified
by 'PATH. Once adirectory is cached, IDL knows whether or not it contains a given
file, without the need to actually attempt to open that file. Thisinformation allows
IDL to bypass directories that do not contain the desired file, providing a significant
boost in the speed of path searching. The path cache can significantly improve the
startup speed of large, object-oriented applications, because method resolution
requires extensive path searching.

The path cache operates on a per-directory basis; if IDL searches adirectory for a
.proor. sav file thelocationsof all . pro and. sav filesin that directory are added
to the cache, and the directory is not searched again until the cache is cleared and
rebuilt.

Note
The current contents of the path cache can be viewed using the PATH_CACHE

keyword to the HEL P procedure.

Syntax

PATH_CACHE[, /CLEAR] [, /ENABLE] [, /REBUILD]

Arguments

None.

Keywords

CLEAR

Set this keyword to clear the entire contents of the path cache, leaving it completely
empty. If path caching is enabled, IDL will begin rebuilding the cache the next time it
needsto locatea. pr o or . sav file. If you wish to prevent the rebuilding of the
cache, set the ENABLE keyword equal to zero aswell.

Note
The .RESET_SESSION executive command clears the entire path cache as part of

resetting the IDL session.

PATH_CACHE What's New in IDL 6.0

Chapter 3: New IDL Routines 253

ENABLE

Set this keyword to a non-zero value to specify that IDL should use the path cache
when searching for files and also add new directories to the cache asthey are opened.
Set this keyword to zero to disable use of the cache when searching for files, and to
discontinue adding new directories.

Note
Disabling the cache does not cause the current contents of the cache to be
discarded. To discard the cache information, specify the CLEAR keyword.

REBUILD

Set this keyword to discard the current contents of the path cache (asif the CLEAR
keyword had been specified), and then immediately rebuild the cache by searching
the directories specified by the current value of the 'PATH system variable for . pr o
and . sav files.

Note
If 'PATH contains many directories, or if access to those directoriesis slow,
rebuilding the cache using this method may also be slow. In many cases, the
CLEAR keyword is sufficient, since IDL will rebuild the empty cache as program
execution requiresit to search for . pro and . sav files.

Situations in which IDL will not use the Path Cache

By default, IDL usesthe path cache whenever it triesto locate . pr o or . sav files.
However, IDL will never use the path cache in the following situations:

Current Working Directory

The path cache is neither checked nor added to if the file being searched for existsin
the current working directory. Before IDL searches !PATH for afile to compile, it
alwayslooksin the current working directory without checking the cache.

Relative Paths

The path cache does not cache directories specified relative to the current directory,
even though relative paths are allowed in the specification of 'PATH.

An absolute (or fully qualified) path is a path that completely specifies the location of
afile. Under UNIX, an absolute path is specified relative to the root of the filesystem,
and therefore startswith aslash (/) character. Under Microsoft Windows, an absolute

What's New in IDL 6.0 PATH_CACHE

254 Chapter 3: New IDL Routines

path starts with adrive letter (C: , for example) or adouble backslash (\ \) (if thefile
is specified using the Universal Naming Convention format). In contrast, arelative
path isincomplete, and must be interpreted relative to the current working directory
of the IDL process. IDL only caches absolute paths.

Executive Commands

The path cacheis neither checked nor added to when a. COVPI LE or . RUN executive
command isissued. In such cases, IDL performs a standard directory-by-directory
search of the directoriesincluded in !PATH.

IDL_NOCACHE File Present

IDL will not cache the contents of any directory that contains a file named
I DL_NOCACHE. See “Marking Specific Directories as Uncacheable” on page 255 for
additional information on this feature.

Path Cache Disabled

IDL will neither check nor add files to the path cache if it has been disabled. See
“Disabling the Path Cache”, below, for additional information.

Disabling the Path Cache

By default, IDL cachesthelocations of . pro and . sav filesin all directories
specified by the |PATH system variable. Use of the path cache can be fully disabled
in the following ways:

1. By issuingthe PATH_CACHE command with the ENABLE keyword set equal
to zero. Thiswill disable the path cache until you manually re-enable it, or for
the duration of the current IDL session. See the description of the ENABLE
keyword, above, for details.

2. By unchecking the “Enable Path Caching” checkbox on the Path tab of the
IDLDE Preferences dialog. See “Path Preferences’ in Chapter 5 of the Using
IDL manual for details.

3. By defining an environment variable named IDL_PATH_CACHE_DISABLE
before starting IDL. See “Environment Variables Used by IDL” in Chapter 1 of
the Using IDL manual for details.

In addition, you can selectively disable use of the path cache for specific directories
by creating afile named | DL_NOCACHE in the directory. See “Marking Specific
Directories as Uncacheable”, below, for details.

PATH_CACHE What's New in IDL 6.0

Chapter 3: New IDL Routines 255

Marking Specific Directories as Uncacheable

You can mark specific directories as being uncacheable even though the directory is
included in 'PATH. To do so, create afile named | DL_NOCACHE in that directory.

Note
IDL does not inspect the contents of an | DL_ NOCACHE file; it can contain anything
you wish, or nothing at al. Under Unix operating systems, the | DL_NOCACHE file
must be named exactly as shown, using all uppercase charactersin the name. Under
Microsoft Windows, the characters can have any case, but RSI suggests you use
upper case for consistency.

When IDL encounters a directory containing an | DL_ NOCACHE file during normal
path searching, it makes a special entry in the path cache telling it that the directory
must not be cached. Once thisis done, all future attemptsto locate filesin that
directory will be done without using cached information.

Note
If the directory to which you add an | DL_NOCACHE file has already been added to
the path cache for the current IDL session, you must clear the existing cache (using
the CLEAR keyword to the PATH_CACHE procedure) before the no-cache setting
will take effect.

To re-enable path caching for a directory that has been marked as uncacheable,
remove the | DL_NOCACHE file, and then reset IDL’s path cache in one of the
following ways:

e Specify the CLEAR keyword to the PATH_CACHE procedure.
e Issuethe .RESET_SESSION executive command.
¢ Exit and restart the IDL session.

Options for Avoiding Use of the Path Cache

In most cases, the files contained in directories included in !PATH do not change
during an IDL session. In such cases the path cache is completely transparent to the
IDL user, and serves only to speed compilation of IDL routines. As aresult, thereis
rarely areason to globally disable the path cache.

If files are created or deleted in adirectory included in 'PATH during an IDL session,
the path cache can become confused and provide bad information to IDL about the
contents of that directory. There are several waysto handle this situation. The

What's New in IDL 6.0 PATH_CACHE

256

Chapter 3: New IDL Routines

following list of aternativesis given in rough order of preference, with the easiest
and lowest-impact options given first:

1

L eave the path cache enabled, and change your current working directory to
thedirectory in which files are created or deleted. Since IDL checksthe current
working directory before checking the directoriesin !PATH, use of the path
cache does not affect IDL’s ability to find these files.

If the addition or deletion of filesin adirectory included in 'PATH isarare
occurrence, leave the path cache enabled and clear it in one of the following
ways after the contents of the directory have changed:

e Specify the CLEAR keyword to the PATH_CACHE procedure.
e Issuethe .RESET SESSION executive command.
¢ Exit and restart the IDL session.

L eave the path cache enabled and use the .COMPILE or .RUN executive
commands to force the compilation of any file, regardless of the contents of the
path cache.

If you have a directory (other than your current working directory) in which
files are regularly added or deleted during the execution of IDL sessions, you
can leave path caching enabled but explicitly disable caching of that specific
directory by creating an | DL_NOCACHE file, as described in “Marking Specific
Directories as Uncacheable” on page 255. This approach works for al IDL
sessions that access the directory, and is therefore convenient in long-term or
multi-user situations.

You can completely disable operation of the path cache using one of the
methods described under “ Disabling the Path Cache” on page 254. Thisis not
recommended, because most directories are not dynamic, and completely
disabling path caching sacrifices the performance advantages of caching
directories whose contents are static.

Note on Behavior at Startup

Depending on the value of your !PATH system variable, you may notice that some
directories are being cached immediately when IDL starts up. Thiswill occur if your
path definition string includes the <I DL_DEFAULT> token, or if one or more entries
include the “+” symbol. In these cases, in order for IDL to build the 'PATH system
variable, it must inspect subdirectories of the specified directories for the presence of
. pro and. sav files, with the side effect of adding these directories to the path
cache. See EXPAND_PATH for adiscussion of IDL’s path expansion behavior.

PATH_CACHE

What's New in IDL 6.0

Chapter 3: New IDL Routines 257

Examples

The following statement disables path caching for the current session:
PATH_CACHE, ENABLE = 0

The following statement disables path caching for the current session and throws
away the current contents of the cache:

PATH_CACHE, ENABLE = 0, /CLEAR

Suppose you want to remove a directory included in 'PATH from the cache without
resetting your IDL session. The following statements cause the specified directory
not to be included in future caching by creating afile named | DL_NOCACHE in that
directory:

OPENW UNIT = u, '/home/idluser/idl _dev_dir/1DL_NOCACHE , /GET_LUN
FREE_LUN, u

The OPENW and FREE_L UN statements create an empty file with the desired name
in the target directory. Executing the following statement clears the cache so asto
reflect the change in the current IDL session:

PATH_CACHE, /CLEAR

The next time IDL encounters this directory in a path search, it will see the presence
of the | DL_NOCACHE and make a note in the path cache that the directory is not
cacheable.

Note
You can also create the | DL_NOCACHE file outside IDL using any convenient
command (text editor, Unix t ouch command, etc.). If thefile is created outside
IDL, only the PATH_CACHE, / CLEAR statement is necessary.

Version History
Introduced: 6.0
See Also
FULL_RESET_SESSION, .RESET_SESSION, “!PATH” in Appendix D,

“Environment Variables Used by IDL” in Chapter 1 of the Using IDL manual, “Path
Preferences’ in Chapter 5 of the Using IDL manual

What's New in IDL 6.0 PATH_CACHE

258 Chapter 3: New IDL Routines

WIDGET_PROPERTYSHEET

The WIDGET_PROPERTY SHEET function creates a property sheet widget, which
exposes the properties of an IDL object subclassed from the IDLitComponent class
in agraphical interface. The property sheet widget must be a child of a base or tab
widget, and it cannot be the parent of any other widget.

The property sheet widget exposes the properties of an IDL object that subclasses
from the IDLitComponent class, which was designed for use by the IDL iTools
system. Asaresult, all IDLit* objects subclass from IDLitComponent, so properties
of object classes written for the IDL iTools system can be displayed in a property
sheet. In addition, all IDLgr* objects subclass from IDLitComponent, which means
that properties of standard IDL graphics objects can be displayed in a property sheet
even if therest of theiTools framework is not in use.

In order to be shown in a property sheet, object properties must be registered and
visible. In addition, in order for property values shown in a property sheet to be
editable by the user, the property must be sensitive. For information on registering
properties, see “ Registering Properties’ in Chapter 4 of the iTool Developer’s Guide
manual. For information on making properties visible and sensitive, see “ Property
Attributes’ in Chapter 4 of the iTool Developer’s Guide manual.

Syntax

Result = WIDGET_PROPERTY SHEET (Parent [, /ALIGN_BOTTOM

|, /ALIGN_CENTER |, /ALIGN_LEFT |, /ALIGN_RIGHT |, /ALIGN_TOP]
[, /ICONTEXT_EVENTS] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[, FONT=string] [, FUNC_GET_VALUE=string] [, KILL_NOTIFY=string]
[,/NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]
[, SCR_XSIZE=width] [, SCR_Y SIZE=height] [, /SENSITIVE]

[, ITRACKING_EVENTS] [, UNAME=string] [LUNITS={0| 1| 2}]

[, UVALUE=valug] [, VALUE=value] [, XOFFSET=valug] [, XSIZE=valu€]
[, YOFFSET=valug] [, Y SIZE=value])

Return Value

The returned value of this function is the widget ID of the newly-created property
sheet widget.

WIDGET_PROPERTYSHEET What's New in IDL 6.0

Chapter 3: New IDL Routines 259

Arguments

Parent

Thewidget ID of the parent for the new property sheet widget. Parent must be a base
or tab widget.

Keywords
ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

CONTEXT_EVENTS

Set this keyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to O
(zero) to disable such events. Context events are intended for use with context-
sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAY CONTEXTMENU procedure within your widget
program’s event handler to display the context menu.

What's New in IDL 6.0 WIDGET_PROPERTYSHEET

260

Chapter 3: New IDL Routines

For more on detecting and handling context menu events, see “ Context-Sensitive
Menus’ in Chapter 26 of the Building IDL Applications manual.

Note
With regard to /CONTEXT_EVENTS, the Motif and Windows version of the
property sheet differ very slightly. In the Motif version, individually desensitized
cells cannot generate context events, though their row label can.

EVENT_FUNC

A string containing the name of afunction to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified is a device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts” in Appendix | of the IDL Reference Guide
manual for details on specifying names for device fonts. If this keyword is omitted,
the default font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FUNC_GET_VALUE

A string containing the name of afunction to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

WIDGET_PROPERTYSHEET What's New in IDL 6.0

Chapter 3: New IDL Routines 261

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
“callback” procedure. It can be removed by setting the routine to the null string ().

The callback routine is called with the widget identifier asits only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require awidget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT functionis called.

Note
A procedure specified viathe CLEANUP keyword to XMANAGER will override a

procedure specified for your application’s top-level base with WIDGET_BASE,
KILL_NOTIFY.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywordsto WIDGET_CONTROL, IDL

makes a second copy of the data being transferred. Although this techniqueisfinefor
small data, it can have a significant memory cost when the data being copied islarge.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. During a set operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. During a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user vaue of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string (* *).
The callback routine is called with the widget ID as its only argument.

What's New in IDL 6.0 WIDGET_PROPERTYSHEET

262

Chapter 3: New IDL Routines

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedureis caled for thiswidget. Using this
technique allows you to designate a routine that sets the value for awidget.
Compound widgets use this ability to define their values transparently

SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the X SIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the Y SIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If honzero, it becomes
sensitive. When awidget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When awidget isinsensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is alowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

TRACKING_EVENTS

Set this keyword to cause widget tracking eventsto be issued for the widget whenever
the mouse pointer enters or leaves the region covered by that widget. For the structure
of tracking events, see “TRACKING_EVENTS’ inthe IDL Reference Guide manual
in the documentation for WIDGET_BASE.

WIDGET_PROPERTYSHEET What's New in IDL 6.0

Chapter 3: New IDL Routines 263

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements arein pixels (thisisthe
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that al measurements are in centimeters.

UVALUE

The user value to be assigned to the widget. Each widget can contain a user-specified
value of any data type and organization. This valueis not used by the widget in any
way, but exists entirely for the convenience of the IDL programmer. This keyword
allows you to set this value when the widget isfirst created.

If UVALUE is not present, the widget's initial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

VALUE

Set this keyword to the object reference or array of object references to objects that
subclass from the IDLitComponent class. Registered properties of the specified
objects will be displayed in the property sheet.

If asingle object reference is supplied, the property sheet will have a single column
containing the object’s properties. If an array of object referencesis supplied, the
property sheet will have multiple columns.

Note
Dueto limitations of the user interface controls that underlie the property sheet
widget, a property sheet can display properties for at most 100 component objects.

What's New in IDL 6.0 WIDGET_PROPERTYSHEET

264 Chapter 3: New IDL Routines

Note
All object references must be to objects of the same type.

If no object references are supplied, the property sheet will initially be empty. Object
references can be loaded into an existing property sheet using the SET_VALUE
keyword to WIDGET_CONTROL.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. Thiskeyword is primarily of
use relative to a bulletin board base widget. Note that it is best to avoid using this
style of widget layout.

XSIZE

The desired width, in average character widths, for the widget's font, not including a
possible vertical scrollbar and any frame thickness. If neither XSIZE nor
SCR_XSIZE is specified, then the property sheet widget will use a default width.
This default width is computed by adding the room needed for the property names to
the width of a color cell.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. Thiskeyword is primarily of
use relative to a bulletin board base widget. Note that it is best to avoid using this
style of widget layout.

YSIZE

The desired height of the widget, in number of visible properties. The ultimate height
of the property sheet in pixels will include the heights of the column header, the
possible horizontal scrollbar, and any frame. If neither YSIZE nor SCR_YSIZE is
specified, the property sheet will use adefault height. This default is based on the
number of rows: 10, or the number of visible properties, whichever isless.

WIDGET_PROPERTYSHEET What's New in IDL 6.0

Chapter 3: New IDL Routines 265

Keywords to WIDGET_CONTROL

A number of keywords to the WIDGET_CONTROL affect the behavior of property
sheet widgets. In addition to those keywords that affect all widgets, the following
keyword is particularly useful: REFRESH PROPERTY..

Keywords to WIDGET_INFO

Some keywords to WIDGET _INFO return information that applies specifically to

property sheet widgets. In addition to those keywords that apply to all widgets, the
following keywords are particularly useful: COMPONENT, PROPERTY _VALID,
PROPERTY _VALUE.

Widget Events Returned by Property Sheet Widgets

Several variations of the property sheet widget event structure depend upon the
specific event being reported. All of these structures contain the standard three fields
(ID, TOP, and HANDLER) aswell asan integer TY PE field that indicates which type
of structure has been returned or which type of event was generated. Programs should
always check the type field before referencing fields that are not present in all
property sheet event structures. The different property sheet widget event structures
are described below.

Change Event (TYPE=0)

This event is generated whenever the user enters a new value for a property. It is also
used to signal that a user-defined property needs to be changed. The following
statement defines the event structure returned by the WIDGET_EVENT function:
{ W DGET_PROPSHEET_CHANGE, |D: 0L, TOP: 0L, HANDLER OL, TYPE:OL,
COVPONENT: OBJREF, | DENTIFIER "", PROPTYPE:OL, SET_DEFI NED: OL}
The COMPONENT field contains an object reference to the object associated with

the property sheet. When multiple objects are associated with the property shest, this
field indicates which object is to change.

The IDENTIFIER field specifies the value of the property’sidentifier attribute. This
identifier is unique among al of the component’s properties.

What's New in IDL 6.0 WIDGET_PROPERTYSHEET

266 Chapter 3: New IDL Routines

The PROPTY PE field indicates the type of the property (integer, string, €tc.). The
integer values for these types are:

* 0=USERDEF
« 1=BOOLEAN
« 2=INTEGER

« 3=FLOAT
* 4=STRING
* 5=COLOR

* O6=LINESTYLE
e 7=SYMBOL

» 8=THICKNESS
* 9=ENUMLIST

The SET_DEFINED field indicates whether or not an undefined property is having
its value set. In most circumstances, along with its new value, the property should
have its UNDEFINED attribute set to zero. If a property is never marked as
undefined, thisfield can be ignored.

Select Event (TYPE=1)

The select event is generated whenever the current row or column in the property
sheet changes. Navigation between cellsis performed by clicking on acell. When the
property sheet isrealized, no cell is selected.

The following statement defines the event structure returned by the
WIDGET_EVENT function:

{W DGET_PROPSHEET_SELECT, 1D: 0L, TOP:0L, HANDLER OL, TYPE:OL,
COVPONENT: OBJREF, | DENTIFIER ""}

The COMPONENT field is an object reference to the object associated with the
property sheet.

The IDENTIFIER field specifies the value of the property’sidentifier attribute. This
identifier is unique among al properties of the component.

WIDGET_PROPERTYSHEET What's New in IDL 6.0

Chapter 3: New IDL Routines 267

Example

Enter the following program in the IDL Editor:
; ExSi ngl ePr opSheet

Creates a base with a property sheet. Only the
default properties are visible. The property sheet’s
; event handl er sets values and reveal s sel ection

; changes.

PRO PropertyEvent, event
IF (event.type EQ 0) THEN BEGA N ; Val ue changed.
; Get the value of the property identified by
; event.identifier.
val ue = WDGET_I NFQ(event.id, COVPONENT = event.conponent, $
PROPERTY_VALUE = event.identifier)
; Set the conponent’s property val ue.
event.conponent -> SetPropertyByldentifier, event.identifier, $
val ue
PRI NT, 'Changed: ', event.identifier, ': ', value
ENDI F ELSE BEGA N ; Sel ecti on changed.
PRI NT, 'Selected: ' + event.identifier
ENDEL SE
END
PRO ExSi ngl ePr opSheet _event, event
prop = WDGET_I NFQ(event.top, $
FI ND_BY_UNAME = ' PropSheet')
W DGET_CONTROL, prop, XSIZE = event.x, YSIZE = event.y
END
PRO C eanupEvent, basel D

W DGET_CONTROL, basel D, GET_UVALUE = oConp
OBJ_DESTROY, o0Conp

END

What's New in IDL 6.0 WIDGET_PROPERTYSHEET

268

WIDGET_PROPERTYSHEET

Chapter 3: New IDL Routines

PRO ExSi ngl ePr opSheet

; Create and initialize the conponent.
oComp = OBJ_NEW' I DLitVisAxis')

; Create a base and property sheet.

base = W DGET_BASE(/ TLB_SI ZE_EVENT, $
TITLE = 'Single Property Sheet Exanple', $
KI LL_NOTI FY = ' C eanupEvent ')

prop = W DGET_PROPERTYSHEET(base, VALUE = oConp, $
EVENT_PRO = ' PropertyEvent', UNAME = 'PropSheet')

; Activate the wi dgets.
W DGET_CONTROL, base, SET_UVALUE = oConp, /REALIZE

XMANAGER, ' ExSi ngl ePropSheet', base, /NO _BLOCK

END

Save this program as ExSi ngl ePr opSheet . pr o, then compile and run the
program. A property sheet entitled Single Property Sheet Example is displayed:

&l|Single Property Sheet Exam - |EI|1|

Axis
Mame iz
WARR Wisualization
Hide |Show
Testcolr [000
Ariscolr [000
Color palette
Uipels |

Use logarithmiz axis |False
Use exact axiz range | True
Extend axis Falze
Mumber of major ticks |6
Murnber of minor ticks |3
Minor tick length 05

Tick interval 0

Tick layout Az pluz labels
Tick format code

Text hide False

Text position Below/left
Text font Helvetica

Text style Mormal

Text fort size 12

Figure 3-19: Single Property Sheet Example

What's New in IDL 6.0

Chapter 3: New IDL Routines 269

For examples of the types of settings possible from the property sheet:

¢ Click the Hide setting box, click the drop-down button, and select H de from
thelist.

¢ Clickthe Major tick length setting box, click the drop-down button, and
move the slider to select anew value.

e Click the Text color setting box, click the drop-down button, and select a new
color from the color selector.

Version History

Introduced: 6.0

What's New in IDL 6.0 WIDGET_PROPERTYSHEET

270 Chapter 3: New IDL Routines

WIDGET_PROPERTYSHEET What's New in IDL 6.0

Chapter 4:

Using Java Objects In

IDL

The following topics are covered in this chapter:

OVEIVIEW ..ot 272
Initializing the IDL-JavaBridge 274
IDL-Java Bridge Data Type Mapping 277
Creating IDL-JavaObjects 283

Method Callson IDL-JavaObjects 285
Managing IDL-Java Object Properties ...

What's New in IDL 6.0

Destroying IDL-JavaObjects 289
Showing IDL-JavaOutput in IDL 290
The IDLJavaBridgeSession Object 291
JavaExceptions 293
IDL-JavaBridge Examples 296
Troubleshooting Your Bridge Session ... 314

271

272

Chapter 4: Using Java Objects in IDL

Overview

Javais an object-oriented programming language developed by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Javain detail. Numerous third-party
books and electronic resources are available. The Java website (http://java.sun.com)
may be useful.

IDL 6.0 introduces the IDL-Java bridge, which alows you to access Java objects
within IDL code. Java objectsimported into IDL behave like normal IDL objects. See
“Creating IDL-Java Objects’ on page 283 for moreinformation. The IDL-Javabridge
allows the arrow operator (- >) to be used to call the methods of these Java objects
just aswith other IDL objects, see “Method Calls on IDL-Java Objects’ on page 285
for more information. The public data members of a Java object are accessed through
GetProperty and SetProperty methods, see “Managing I DL-Java Object Properties’
on page 287 for more information. These objects can also be destroyed with the
OBJ DESTROQOY routine, see “Destroying IDL-Java Objects’ on page 289 for more
information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This
functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. Thisaccessis provided by the IDL JavaBridgeSession object, whichisa
Java object that maintains exceptions (errors) during a Java session, see “ The

IDL JavaBridgeSession Object” on page 291 for more information.

Note
Visua Java objects cannot be embedded into IDL widgets.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, and
Macintosh platforms supported in IDL. See “ Requirements for this Release” on
page 117 for more information on these platforms supported in IDL 6.0.

Java Terminology

Overview

You should become familiar with the following terms before trying to understand
how IDL works with Java objects:

Java Mirtual Machine (VM) - A software execution engine for executing the byte
codes in Java class files on a microprocessor.

What's New in IDL 6.0

http://java.sun.com

Chapter 4: Using Java Objects in IDL 273

Java Native Interface (JNI) - Standard programming interface for accessing Java
native methods and embedding the JVM into native applications. For example, JNI
may be used to call C/C++ functionality from Java or JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An APl by which one may embed the Java Virtual Machine
into your native application by linking the native application with the VM shared
library.

Java Reflection API - Provides a small, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

e construct new class instances and new arrays
e access and modify fields of objects and classes
¢ invoke methods on objects and classes

e access and modify elements of arrays.

IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (JNI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ NEW function can be used to create a Java abject. A Java-specific
classtoken identifies the Java class used to create a Java proxy object. IDL parsesthis
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Javaclassis aso
provided because Javaitself is case-sensitive while IDL isnot. IDL usesthe case-
insensitive form to create the object definition while Java uses the case-sensitive
form.

After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL object, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.

The OBJ_ DESTROY procedurein IDL isused to destroy the object. This process
releases the internal Java object and frees any resources associated with it.

What's New in IDL 6.0 Overview

274 Chapter 4: Using Java Objects in IDL

Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attempts to create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtua
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal | DL JavaBridgeSession object. See “ The IDL JavaBridgeSession Object” on
page 291 for more information on the session object.

Configuring the Bridge

The.idljavabrc fileon UNIX ori dl j avabr ¢ on Windows contains the IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create a valid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If theenvironment variable $IDLJAVAB_CONFIG is set, thefileit indicatesis
used.

Note
This environment variable must include both the path AND the file name of

the configuration file.

2. |If the environment variable $IDLJAVAB_CONFIG is not set or thefile
indicated by that variableis not found in that location, the path specified in the
$HOME environment variable is used to try to locate the configuration file.

3. If thefileisnot found in the path indicated by the SHOME environment
variable, the <IDL_DEFAULT>/ ext er nal / obj bri dge/ j ava path is used
to try to locate the configuration file.

The configuration file contains the following settings. With atext editor, open your
configuration file to verify these settings are correct for your system.

e ThedVM O asspat h setting specifies additional locations for user classes. It
must point to the location of any class files to be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.

Initializing the IDL-Java Bridge What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 275

This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying ’-classpath’ when running j ava or

j avac. You can aso include the $SCLASSPATH environment variable in the
JVM Cl asspat h:

JVM C asspath = $CLASSPATH: / hone/ j ohnd/ myCl asses. j ar

which allows any class defined in the CLASSPATH environment variable to be
used in the IDL-Java bridge.

On Windows, an example of atypical JVM O asspat h settingis:
JVM d asspath = E:\nyd asses. j ar; $CLASSPATH

On UNIX, an example of atypical JVM O asspat h setting is:
JVM O asspath = /home/j ohnd/ myd asses. j ar : $CLASSPATH

* TheJVM Li bLocat i on setting tells the IDL-Java bridge which JVM shared
library within a given Java version to use. Various versions of Java ship with
different types of VM libraries. For example, Java 1.3 on Windows ships with
a"classic" WM, a"hotspot" VM, and a"server” JVM. Other versions and
platforms have different VM types.

On Windows, an example of atypical JVM Li bLocat i on settingis:
JVM Li bLocation = E:\jdkl1l.3.1_02\jre\bin\hotspot
On UNIX, an example of atypical JVM Li bLocat i on settingis

JVM Li bLocation = /usr/javalj2rel.4.0_02/1ib/sparc/client
Note
The preferred method for setting JVM Li bLocat i on on Windowsisviathe
configuration fileor the IDLJAVAB_LIB_LOCATION environment variable.
The preferred method on UNIX isviathe $IDLJAVAB_LIB_LOCATION
environment variable because UNIX requires this variable to be set in order
to find Java shared libraries.

e TheJVM Opti on# (where# is any whole number) setting allows you to send
additional parametersto the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in theinitialization, the options are added to the end of the options
that the bridge sets by default.

e Thelog Locati on setting indicates the directory where IDL-Java bridgelog
fileswill be created. The default location provided by the IDL installer is/ t np
onUnix and c: \ t enp on Windows.

What's New in IDL 6.0 Initializing the IDL-Java Bridge

276 Chapter 4: Using Java Objects in IDL

« TheBridge Loggi ng setting indicates the type of bridge debug logging to be
sentto afilecaledj b_I og<pi d>. t xt (where<pi d>isaprocess|D
number) located in the directory specified by the Log Locat i on setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFI G,
CONFI GFI NE. The default value is SEVERE, which specifies that bridge errors
arelogged. The CONFI Gvalue indicates the configuration settings are also
logged. The CONFI GFI NE value is the same as CONFI G, but provides more
detail.

No log fileis created if this setting is not specified.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. The fileis used when the first instance of the IDLjavaObject classis created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made to
thefile.

Initializing the IDL-Java Bridge What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL

IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts

variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Javalang.String String Java has the notion
of aNULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both areidentically
converted.

Arrays of the above types IDL array of the same

dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 4-1: Java to IDL Data Type Conversion

What's New in IDL 6.0

IDL-Java Bridge Data Type Mapping

278 Chapter 4: Using Java Objects in IDL

Java Type (# bytes) IDL Type Notes
Javallang.Object (or array of | IDL array of primitives | InJava, everythingis
javalang.Object) and any or IDL array of asubclass of Object.
subclass of java.lang.Object | IDLjavaObjects If the Java object is

an array of

primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in this table)
iscreated. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objectsto an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL createsan object
reference of the
IDLjavaObject class.

Null object IDL Null object

Table 4-1: Java to IDL Data Type Conversion (Continued)

IDL-Java Bridge Data Type Mapping What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 279

The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes
Byte byte (1) IDL bytesrange from 0 to 255,
Java bytes are-128 to 127. IDL
bytes converted to Java bytes

will retain their binary
representation but values greater
than 127 will change. For
example, BY TE(255) becomesa
Javabyteof -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from 0O to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
aJavashort of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 4-2: IDL to Java Data Type Conversion

What's New in IDL 6.0 IDL-Java Bridge Data Type Mapping

280

Chapter 4: Using Java Objects in IDL

IDL Type

Java Type (# bytes)

Notes

Unsigned long

int (4)

IDL unsigned longs range from
0to 4294967295, Javaints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Javaints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
aJavaint of -1. If ULONG is
converted to wider Javavalue,
the sign and value is preserved.

Long64

long (8)

Unsigned Long64

long (8)

IDL unsigned long64 range from
0 to 18446744073709551615,
Javaints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Javalongs will retain their
binary representation values
greater than
9223372036854775807 will
change. For example,

UL ONG64(1844674407370955
1615) becomes a Javalong of -1.

Float

float (4)

Double

double (8)

String

Java.lang.String

Arrays of the above
types

Java array of the same
dimensions and
corresponding type

Table 4-2: IDL to Java Data Type Conversion (Continued)

IDL-Java Bridge Data Type Mapping

What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 281

IDL Type Java Type (# bytes) Notes
IDLjavaObject Object of corresponding
Javaclass

Arrays of objects Javaarray of the same Only objects of type
dimensions, consisting of | IDLjavaObject are converted.
corresponding Java proxy
objects

Null object Javanull

Table 4-2: IDL to Java Data Type Conversion (Continued)

When calling a Java method or constructor from IDL, the data parameters are
promoted as little as possible based on the signature of the given method. The
following table shows how data types are promoted within Javarelative to IDL.

Note
When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may be time intensive. Care
should be taken to minimize array copying.

Java Type (to order of

IDL Type desired promotion) AR
Byte byte, char, short, int, long,
float, double, boolean
Integer short, int, long, float, double,
boolean
Unsigned integer | short, int, long, float, double,
boolean
Long int, long, float, double, boolean
Unsigned Long int, long, float, double, boolean
Long64 long, float, double, boolean

Unsigned Long64 | long, float, double, boolean

Table 4-3: Java Data Type Promotion Relative to IDL

What's New in IDL 6.0 IDL-Java Bridge Data Type Mapping

282 Chapter 4: Using Java Objects in IDL

DLType | Gired promotion). Notes
Float float, double
Double double
String Javalang.String
IDLjavaObject Java.lang.Object

Table 4-3: Java Data Type Promotion Relative to IDL (Continued)

IDL-Java Bridge Data Type Mapping What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 283

Creating IDL-Java Objects

Aswith all IDL objects, a Java object is created using the IDL OBJ_NEW function.
Keying off the provided Java class name, the underlying implementation uses the
IDL Java subsystem to call the constructor on the desired Java object. The following
line of code demonstrates the basic syntax for calling OBJ_NEW to create a Java
object within IDL:

oJava = OBJ_NEWI DLj avaObj ect $JAVACLASSNAME, Javad assNane, $
[Argl, Arg2, ..., ArgN)

where JAVACLASSNAME is the class name token used by IDL to create the object,
JavaC assNane isthe class name used by Javato initialize the object, and Argl

through ArgN are any data parameters required by the constructor. See “Java Class
Namesin IDL” for more information.

Seethehel | oj ava. pro fileintheext er nal / obj bri dge/ j ava/ exanpl es
directory of the IDL distribution for a simple example of an IDL-Java object creation.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge a so provides the ability to access static Java methods and data
members. See “ Java Static Access’ on page 284 for more information.

Java Class Names in IDL

The underlying Javainterpreter recognizes the Java class nameincluding all objects
contained within the Java interpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referredto asj ava. | ang. Stri ng.

Inthe IDL class name, the Java class separator (*.") should be replaced with an
underscore (). If aJavaclass of type String were created, the following IDL
OBJ NEW call would be used:

0JString = OBJ_NEW' I DLJavaObj ect $JAVA LANG STRING , $
"java.lang. String', 'MWy String')

What's New in IDL 6.0 Creating IDL-Java Objects

284

Chapter 4: Using Java Objects in IDL

The class name is provided twice because IDL is case-insensitive whereas Javais
case-sensitive, see “1DL-Java Bridge Architecture” on page 273 for more
information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object
lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUP,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a special wrapper object type for calling static methods. This DL
object wrapper references the underlying Java class, alowing the object to call static
methods on the class or allowing the object to use the Get/Set Property callsto access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ_NEW to create a static proxy within IDL:

oJava = OBJ_NEW I DLj avaObj ect $St at i c3JAVACLASSNAME, Javad assNane)

where JAVACLASNAME is the class name token used by IDL to create the object and
Javad assNane isthe class name used by Javato initialize the object. See “Java
ClassNamesin IDL” on page 283 for more information.

A special static object would not need to be created to call an instantiated
| DLJava(hj ect with static methods:

oNot Static = OBJ_NEW' | DLj avaObj ect $JAVACLASSNAME' , $
' Javad assNane')
oNot Static -> aStaticMethod ; this is K

Seethej avapr ops. pro fileintheext er nal / obj bri dge/ j ava/ exanpl es
directory of the IDL distribution for an example of working with static data members.

Note
All restrictions on creating Java objects apply to this static object.

Creating IDL-Java Objects What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 285

Method Calls on IDL-Java Objects

When amethod is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Javadatatypes. Any resultsarereturnedin
IDL variables of the appropriate type.

Aswith all IDL objects, the general syntax in IDL for an underlying Java method that
returns avalue (known as afunction method in IDL) is:

result = Cbj Ref -> Method([Argunents])

and the general syntax in IDL for an underlying Java method that does not return a
value, avoid method, (known as a procedure method in IDL) is:

bj Ref -> Method[, Argunents]

where Obj Ref isan object reference to an instance of a dynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call is Made?

When amethod is called on an instance of IDLjavaObject, IDL uses the method
name and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the translation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java's ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an algorithm to match the IDL method name and parameters to the
corresponding Java object method.

What's New in IDL 6.0 Method Calls on IDL-Java Objects

286

Chapter 4: Using Java Objects in IDL

Before the algorithm starts, IDL provides a case-insensitive <METHODNAME> and
areference to the Java object. For a given object and its parent classes, the Java
bridge obtains alist of al the public method names, including static methods. This
algorithm performs the following steps:

1. If the Java class has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Javaclass has several method namesthat differ only in caseand oneisall
uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge issues
an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion agorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Javais preferred and only
widening promotion is allowed. If no match isfound, an error is issued.

Data Type Conversions

IDL and Java use different datatypes. IDL’'s dynamic type conversion facilities
handle al conversion of data types between IDL and the Java system. The datatype
mappings are described in “IDL-Java Bridge Data Type Mapping” on page 277.

For example, if the Java object has a method that requires avalue of typei nt asan
input argument, IDL would supply the value as an IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal datatype
conversion mechanism before passing the value to the Java object asani nt .

Method Calls on IDL-Java Objects What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 287

Managing IDL-Java Object Properties

Property names and arguments are al so passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection APl to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) areidentified through arguments to the GetProperty and SetProperty
methods. See “ Getting and Setting Properties” on page 288 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the agorithm starts, IDL provides a case-insensitive <PROPERTY NAME>
and areference to the Java object. For the given object and its parent classes, the Java
bridge obtains alist of al the public data membersincluding static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTY NAME> (except for case insensitivity), this Java data member is
used. At this point, data types are not yet taken into account; this algorithm
only matches the data member names.

2. If the Javaclass has severa member names that differ only in case, the data
member name that exactly matches the IDL < PROPERTYNAME > (i.e. the
onethat isall caps) is caled. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTYNAME >.

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error isissued.

When retrieving a property with the GetProperty method, this step is skipped
and the valueisreturned to IDL.

Seetheal | props. pro and publ i cnenbers. pro filesinthe

ext ernal / obj bri dge/ j ava/ exanpl es directory of the IDL distribution for IDL
routines that provide information about data members associated with given Java
classes.

What's New in IDL 6.0 Managing IDL-Java Object Properties

288

Chapter 4: Using Java Objects in IDL

Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:
bj Ref -> GetProperty, PROPERTY=variable

where Obj Ref isan instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variable is
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:
bj Ref -> SetProperty, Property=val ue

where Obj Ref isan instance of IDLjavaObject that encapsulates the Java abject,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property valuesin a single statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routinesis assumed to be afully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDLJavaObject, or an array of an IDL primitive type. See“IDL-Java Bridge Data
Type Mapping” on page 277 for more information.

Note
Besides other Java based objects, no complex types (Structures, pointers, etc.) are
supported as parameters to property calls.

Managing IDL-Java Object Properties What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 289

Destroying IDL-Java Objects

The OBJ_DESTROY routine is used to destroy instances of |DLjavaObject. When
OBJ DESTROY is called with a Java based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine's garbage
collector runs.

What's New in IDL 6.0 Destroying IDL-Java Objects

290 Chapter 4: Using Java Objects in IDL

Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the Syst em out and System err
output streams).

For example, given the following Java code:

public class helloWwrld
{

/'l ctor

public hellowrld() {

Systemout. println("hellowrld ctor");
}

public void sayHello() {
Systemout.printin("Hello! (fromthe helloWrld object)");
}

}
The following output occursin IDL:

I DL> oJHel l o = OBJ_NEW' I DLj avaQoj ect $Hel | oWorl d', 'helloWrld')
% hel | oWorl d ctor

IDL> oJHello -> SayHel | o

% Hel l o! (fromthe hell oWwrld object)

| DL> OBJ_DESTROY, oJHello

Thisexample codeisalso providedinthehel | oJava. j ava andhel | oj ava2. pro
files, which arein the ext er nal / obj bri dge/ j ava/ exanpl es directory of the
IDL distribution.

Note
Dueto restrictionsin IDL concerning receiving standard output from non-main
threads, the bridge will only send Syst em out and Syst em er r information to
IDL from the main thread. Other thread's output will be ignored.

Note
A print () inJavawill not have acarriage return at the end of the line (as opposed
toprintln(),which does). However, when outputting to Java both pri nt () and
println() will print to IDL followed by a carriage return. You can change this
result by having the Java-side application buffer its data up into the lines you wish
to seeon the IDL-side.

Showing IDL-Java Output in IDL What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 291

The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an IDL-Java bridge session object,
IDLJavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is aproxy to aninternal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an | DL JavaObject to this
object using OBJ NEW:

0JSessi on = OBJ_NEW' I DLj avaObj ect $| DLJAVABRI DGESESSI ON')

Note

Only one Java session object needsto be created during an IDL session. Subsequent
callsto this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

oJException = oJSession -> Cet Exception()

where 0JSessi on isareference to the session object and oJExcept i on isaproxy
object toaj ava. | ang. Thr owabl e object, which isthe class used in Javato
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDL JavaBridgeSession object also has the GetVersionObject method, which
retrieves the IDL JavaVersion object:

oJVersion = oJSession -> GetVersi onObj ect ()

where 0JSessi on isareference to the session object and oJVer si on isaproxy
object to an IDL JavaVersion object. This object determines version information
about the IDL-Java bridge and the underlying Java system.

What's New in IDL 6.0 The IDLJavaBridgeSession Object

292 Chapter 4: Using Java Objects in IDL

The IDLJavaVersion abject provides the following function methods, which do not
require any arguments.

e GetBuildDate() - ajavalang.String object specifying the build date. For
example, Apr 1 2003.

* GetJavaVersion() - ajavalang.String object specifying the Java version. For
example, 1. 3. 1_02.

e GetBridgeVersion() - ajava.lang.String object specifying the IDL-Java bridge
version.

An example of the version object is provided inthe bri dge_ver si on. pro file,
whichisin IDL’sext er nal / obj bri dge/ j ava/ exanpl es directory.

The IDLJavaBridgeSession Object What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 293

Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an | DLj avaObj ect , caling methods, setting properties, or getting
properties. Typically, these errorswill be fixed by changing your IDL or Javacode (or
by changing the bridge configuration). Java bridge errors operate like other IDL
errorsin that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create ajava.lang.StringBuffer of negative length, a
java.lang.NegativeArraySizeException is issued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing a line number. In addition, a
mechanism is provided to grab the exception object (a subclass of
javalang.Throwable) viathe session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handleit, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetExpection method to the
IDL JavaBridgeSession object. See “ The | DL JavaBridgeSession Object” on page 291
for more information about this object.

Uncaught Exceptions

If aJavaexception isnot caught, IDL will stop execution and display an Except i on
t hr own error message. For example, when the following program is saved as
Except | ssued. pr o, compiled, and ranin IDL:

PRO Except | ssued
; This will throw a Java exception
0JStrBuffer = OBJ_NEW $
"I DLJavaCbhj ect $j ava_l ang_StringBuffer', $
"java.lang. StringBuffer’, -2)

END

What's New in IDL 6.0 Java Exceptions

294 Chapter 4: Using Java Objects in IDL

IDL issues the following output:

| DL> Except | ssued

% Exception thrown

% Execution halted at: EXCEPTI SSUED 4 Exceptlssues. pro
% $MAI N$

From the IDL command line, you can then use the session object to help debug the
problem:

I DL> o0JSessi on = OBJ_NEW' | DLJava(hj ect $| DLJAVABRI DGESESSI ON)
| DL> oJExc = o0JSession -> Get Exception()

I DL> oJExc -> PrintStackTrace

% j ava. |l ang. Negati veArraySi zeExcepti on:

% at java.lang. StringBuffer.<init>(StringBuffer.java: 116)

A similar exampleisalso provided in the except i on. pr o file, which isin the

ext ernal / obj bri dge/ j ava/ exanpl es directory of the IDL distribution. The
excepti on. pr o example shows how to use the utility routine provided in the
showexcept . pro file. Thisshowexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept . pro fileis
also provided inthe ext er nal / obj bri dge/ j ava/ exanpl es directory of the IDL
distribution.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classesthat you are using to ensure I DL is catching any expected exceptions. For
example:

PRO Except Caught

; Grab the special |DLJavaBri dgeSessi on obj ect
0JBri dgeSessi on = OBJ_NEW' I DLJava(hj ect $| DLJAVABRI DGESESSI ON')

bufferSize = -2
; Qur Java constructor might throw an exception, so let’s catch it
CATCH, error_status
IF (error_status NE 0) THEN BEG N
Use session object to get our Exception
0JExc = 0JBridgeSession -> Cet Exception()
; shoul d be of type
;| DLJAVAOBJECT$JAVA LANG NEGATI VEARRAYSI ZEEXCEPTI ON
HELP, oJExc
; Now we can access the menbers java.l ang. Throwabl e
PRI NT, 'Exception thrown:', oJExc -> ToString()
0JExc -> PrintStackTrace
; Ol eanup
OBJ_DESTROY, o0JExc

Java Exceptions What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 295

; Increase the buffer size to avoid the exception.
bufferSize = bufferSize + 100
ENDI F

; This throws a Java exception the 1st tinme, but pass the 2nd tine.
oJStrBuffer = OBJ_NEW' | DLJavaObj ect $j ava_l ang_StringBuffer', $
"java.lang. StringBuffer', bufferSize)

OBJ_DESTROY, o0JStrBuffer
OBJ_DESTROY, 0JBri dgeSessi on

END

A similar exampleisalso provided in the except i on. pr o file, which isin the

ext ernal / obj bri dge/ j ava/ exanpl es directory of the IDL distribution. The
except i on. pr o example shows how to use the utility routine provided in the
showexcept . pro file. Thisshowexcept utility routine can be re-used to provide
consist error messages when Java exceptions occur. The showexcept . pro fileis
also providedinthe ext er nal / obj bri dge/ j ava/ exanpl es directory of the IDL
distribution.

What's New in IDL 6.0 Java Exceptions

296 Chapter 4: Using Java Objects in IDL

IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

e “Accessing Arrays Example”

e “Accessing URLs Example’ on page 299

» “Accessing Grayscale Images Example” on page 301
e “Accessing RGB Images Example” on page 304

Note
If IDL isnot ableto find any Java class associated with these examples, make sure

your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 274 for more information.

Accessing Arrays Example

This exampl e creates atwo-dimensional array within a Java class, which is contained
inafilenamed ar r ay2d. j ava. IDL then accesses this data through the ArrayDemo
routing, which isin afile named ar r aydeno. pro. Thesefilesarealsointhe IDL
distribution within the ext er nal / obj bri dge/ j ava/ exanpl es directory.

Thearray2d. j ava file contains the following text for creating a two-dimensional

array in Java:
public class array2d
{
short[][] m as;
long[][] m.aj ;

/1 ctor

public array2d()
int SIZE1 = 3;
int SIZE2 = 4;

// default ctor creates a fixed nunber of elenents
m as = new short[SI ZE1] [SI ZE2] ;
m_aj new | ong[SI ZE1] [SI ZE2] ;

for (int i=0; i<SIZEl;, i++) {
for (int j=0; j<SIZE2; j++) {
mas[i][j] = (short)(i*10+j);
maj[i][j] = (long)(i*10+);

IDL-Java Bridge Examples What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 297

public void setShorts(short[][] _as) {

mas = _as;

}

public short[][] getShorts() {return mas;}

public short getShortBylndex(int i, int j) {return mas[i][j];}

public void setLongs(long[][] _aj) {

maj = _aj;
}
public long[][] getLongs() {return maj;}
public long getlLongBylndex(int i, int j) {return maj[i][j];}
}

Thear r aydeno. pr o file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDeno

The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. W can interrogate and
; change this array.
oJArr = OBJ_NEW' | DLJavaQbj ect $ARRAY2D , 'array2d')

; First, let’s see what is in the short array at index
(2,3).
PRINT, 'array2d short(2, 3) ="', $
oJArr -> Get ShortBylndex(2, 3), $
(shoul d be 23)’

; Now, let’s copy the entire array fromJava to IDL.

short ArrIDL = oJArr -> Get Shorts()

HELP, shortArrl DL

PRI NT, 'shortArrIDL[2, 3] ="', shortArrIDL[2, 3], $
' (shoul d be 23)°

; Let’s change this value...

short ArrIDL[2, 3] = 999

; ...and copy it back to Java...

0JArr -> SetShorts, shortArrl DL

; ...nowits value should be different.

What's New in IDL 6.0 IDL-Java Bridge Examples

298

IDL-Java Bridge Examples

Chapter 4: Using Java Objects in IDL

PRI NT, '"array2d short(2, 3) ="', $
0JArr -> Cet ShortByl ndex(2, 3), ' (shoul d be 999)

Let’s set our array to sonething different.
0JArr -> SetShorts, | NDGEN(10, 8)

PRINT, 'array2d short(0, 0) ="', $

0JArr -> Cet ShortByl ndex(0, 0), ' (shoul d be 0)
PRINT, 'array2d short(1, 0) ="', $

0JArr -> Cet ShortByl ndex(1, 0), ' (shoul d be 1)
PRI NT, 'array2d short(2, 0) ="', $

0JArr -> Get ShortByl ndex(2, 0), ' (shoul d be 2)
PRINT, 'array2d short(0, 1) ="', $

0JArr -> Cet ShortByl ndex(0, 1), ' (shoul d be 10)

; Array2d has a setlLongs nethod, but b/c arrays do not
(currently) pronmote, the first call to setlLongs works
; but the second fails.
0JArr -> SetlLongs, L64|1 NDGEN(10, 8)
PRINT, 'array2d long(0, 1) ="', $
oJArr -> CetlLongByl ndex(0, 1), ' (shoul d be 10)

; PRINT, ' (expecting an error on the next line...)
;0JArr -> SetlLongs, | NDGEN(10, 8)

; O eanup our object.
OBJ_DESTROY, 0JArr

END

After saving and compiling the abovefiles (array2d. j ava in Javaand
ArrayDeno. pro inIDL), updatethej bexanpl es. j ar fileinthe

ext er nal / obj bri dge/ j ava directory with the new compiled class and run the
ArrayDemo routine in IDL. The routine should produce the following results:

array2d short(2, 3) = 23 (should be 23)
SHORTARRI DL INT = Array[3, 4]

short ArrIDL[2, 3] = 23 (should be 23)
array2d short(2, 3) 999 (should be 999)
array2d short (0, 0) 0 (should be 0)
array2d short(1, 0) 1 (should be 1)
array2d short(2, 0) 2 (shoul d be 2)
array2d short(0, 1) 10 (shoul d be 10)
array2d long(0, 1) = 10 (should be 10)

What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL

Accessing URLs Example

This example finds and reads a given URL, which is contained in a file named
URLReader . j ava. IDL then accesses this data through the URL Read routine, which
isinafilenamedur | r ead. pro. Thesefilesare aso in the IDL distribution within

theext er nal / obj bri dge/ j aval/ exanpl es directory.

299

The URLReader . j ava file contains the following text for reading agiven URL in

Java:

import java.io.*;
i mport java.net.*;

public class URLReader

{

What's New in IDL 6.0

private ByteArrayQut put Stream m buffer;

// Rk I kb o R AR R R Rk kS kI Rk

/1
/1 Constructor. Create the reader
/1
// kkhkkhkhkhkkhkkhhkhkhkkhkdhhkhhkkhhhhkhhdhhhkhhhhkhkhkdhrhrdhhhkhkdhkrxhkddhrhhddrxrddxx
public URLReader () {
m buffer = new ByteArrayCQut put Streamn();

}

// kkkhkkhkkhhkhkkhhkhkhkhkdhkhkdhkhhhkdrhkdhkhhhhkrhdrhdrhrrdrhkdrhdrrkhrrdxhxdx

I
/1l readURL: read the data fromthe URL into our buffer
I
/1 returns: nunber of bytes read (0 if invalid URL)
I
/1 NOTE: reading a new URL clears out the previous data
I
// EIE R R S I R R S I I R R S R S O
public int readURL(String sURL) ({

URL url;

InputStreamin = null;

m buffer.reset(); // reset our holding buffer to O bytes

int total bytes = 0;
byte[] tenpBuffer = new byte[4096];
try {

url = new URL(SURL);

in = url.openStrean();

IDL-Java Bridge Examples

300 Chapter 4: Using Java Objects in IDL

int bytes_read;

while ((bytes_read = in.read(tempBuffer)) !'=-1) {
m buffer.wite(tenpBuffer, 0, bytes_read);
total _bytes += bytes_read;

} catch (Exception e) {
Systemerr.printin("Error reading URL: "+sURL);
total _bytes = O;
} finally {
try {
in.close();
m buffer. cl ose();
} catch (Exception e) {}

}

return total bytes;

}

// Rk S O S O O R

11
/1 getData: return the array of bytes
/1
// IR R R R EEEEEEEEREEEEEEEEREEEEEEEEEEREEEEEEEE SRR EE RS EEEEEEES
public byte[] getData() {
return mbuffer.toByteArray();

}

// R b o R R S Sk R R R I o Sk R R O R IR R kS b S R R O

I

/1 main: reads URL and reports # of byts reads
I

I Usage: java URLReader <URL>

I

// Rk S ok S R R O Sk R R S ok S b S b S R R R b S S S R R S ok o

public static void main(String[] args) {
if (args.length I'= 1)
Systemerr.println("Usage: URLReader <URL>");
el se {
URLReader o = new URLReader ();
int b = o.readURL(args[0]);
System out . println("bytes="+b);

IDL-Java Bridge Examples What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 301

Theur | r ead. pr o file contains the following text for inputting an URL asan IDL
string and then accessing its datawithin IDL:

FUNCTI ON URLRead, sURLName

Create an URLReader.
0JURLReader = OBJ_NEW'' | DLj avaObj ect $URLReader', ' URLReader')

Read the URL data into our Java-side buffer.
nByt es = oJURLReader -> ReadURL(sURLNane)

;PRINT, 'Read ', nBytes, ' bytes’

Pull the data into |IDL.
byteArr = oJURLReader -> GetData()

Cl eanup Java obj ect.
OBJ_DESTROY, oJURLReader

Return the data.
RETURN, byt eArr

END

After saving and compiling the above files (URLReader . j ava in Javaand
urlread. proinlDL), you canrunthe URLRead routinein IDL. Thisroutineisa
function with one input argument, which should be aIDL string containing an URL.
For example:

address = 'http://ww. RSl nc. com
data = URLRead(address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, which is
contained in afile named Gr eyBands| mage. j ava. IDL then accesses this data
through the ShowGreylmage routine, which isin the showgr eyi mage. pr o file.
Thesefilesare also in the IDL distribution within the

ext ernal / obj bri dge/ j ava/ exanpl es directory.

What's New in IDL 6.0 IDL-Java Bridge Examples

302

Chapter 4: Using Java Objects in IDL

The G eyBands| mage. j ava file containsthe following text for creating agrayscale
image in Java:

i mport java.awt.*;
i mport java.awt.inage.*;

publ

{
I
pri
pri

/1
/1
/1

ic class GeyBandsl mage extends Bufferedl mage
Menber s

vate int m_height;
vate int mwidth;

ctor

public G eyBandsl mage() {

I
I
I

pri

super (100, 100, Bufferedl mage. TYPE_ | NT_ARGB);
gener at el mage() ;

m _hei ght = 100;

mwi dth = 100;

private method to generate the inage

vate voi d generatel mage() {

Col or c;
int wwdth = getWdth();
i nt height = getHeight();

W itabl eRaster raster = getRaster();
Col or Mbdel nodel = get Col or Model () ;

i nt BAND_PI XEL_W DTH = 5;

i nt nBands = wi dt h/ BAND_PI XEL_W DTH;

int greybDelta = 255 / nBands;

for (int i=0; i < nBands; i++) {
¢ = new Color(i*greyDelta, i*greyDelta, i*greyDelta);
int argb = c. get RGB();
Obj ect col orData = nodel . get Dat aEl enent s(argb, null);

for (int j=0; j < height; j++)
for (int k=0; k < BAND_PI XEL_W DTH; k++)
raster.setDataEl ements(j, (i*5)+k, colorData);

IDL-Java Bridge Examples What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL

/1

/1 mutators

/1

public int[] getRawData() {
Raster oRaster = getRaster();
Rect angl e oBounds = oRast er. get Bounds();
int[] data = new int[mheight * mwidth * 4];

data = oRaster. get Pi xel s(0, 0, 100, 100, data);
return data;

}
public int getH() {return mheight; }
public int getW) {return mw dth; }

}

Theshowgr eyi mage. pr o file contains the following text for accessing the

grayscale image within IDL:
PRO ShowG eyl mage

; Construct the GreyBandl nmage in Java. This is a sub-class of
; Bufferedlnage. It is actually a 4 band i mage that happens to

di splay bands in greyscale. It is 100x100 pi xel s.

303

oG ey = OBJ_NEW' | DLj avaObj ect $G eyBandsl nage' , ' G eyBandsl nage')

Get the 4 byte pixel values.
data = oG ey -> Get RawDat a()

; Get the height and wi dth.
h = oGey -> GetH()
w = 0Gey -> GetW)

; Display the graphic in an | DL wi ndow
WNDOW 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; O eanup
OBJ_DESTROY, oG ey

END

What's New in IDL 6.0 IDL-Java Bridge Examples

304 Chapter 4: Using Java Objects in IDL

After saving and compiling the above files (G eyBands| nage. j ava in Javaand
showgr eyi mage. pr o inlDL), you can run the ShowGreylmageroutinein IDL. The
routine should produce the following image:

Figure 4-1: Java Grayscale Image Example

Accessing RGB Images Example

This example imports an RGB (red, green, and blue) image from the IDL distribution
into a Javaclass. Theimageisinthegl owi ng_gas. j pg file, which isin the
exanpl es/ dat a directory of the IDL distribution. The Java class also displays the
image in a Java Swing user-interface. Then, theimage is accessed into IDL and
displayed with the new ilmage tool. The Javaand IDL code for this exampleis
provided in the ext er nal / obj bri dge/ j ava/ exanpl es directory, but the Java
code has not been built as part of thej bexanpl es. j ar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note
Dueto a Java bug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

IDL-Java Bridge Examples What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 305

Thefirst and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the gl owi ng_gas. j pg file. Copy and paste the
following text into afile, then saveit asFr aneTest . j ava:

i mport java.awt.?*;

i mport java.awt.inage.*;

i mport java.awt.event.*;

i mport javax.sw ng.*;

i mport javax.sw ng.event. *;
inmport java.io.File,;

public class FranmeTest extends JFrane {

RSl | mageArea c_i ngArea;
int mxsize;

int mysize;

Box c_contr ol Box;

public FraneTest() {

super("This is a JAVA Swing Programcalled fromIDL");
/1 Dispose the frame when the sys close is hit

set Def aul t Cl oseQper ati on(DI SPOSE_ON_CLOSE) ;

m xsi ze = 350;

mysize = 371;

bui I dQUI () ;

}
public void buildGQJ () {
c_control Box = Box.createVerti cal Box();

JLabel |11 = new JLabel ("Exanpl e Java/lDL Interaction");
JButton bLoadFile = new JButton("Load new file");
bLoadFi | e. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerformed(Acti onEvent e) {
JFi | eChooser chooser = new JFi | eChooser (new
File("c:\\RSI\\IDL60\\ EXAMPLES\\ DATA")) ;
chooser.setDial ogTitle("Enter a JPEG file");
i f (chooser.showQpenDi al og(FraneTest.this) ==
JFi | eChooser. APPROVE_OPTI ON) {

java.io.File fname = chooser. get Sel ectedFile();
String filenane = fnanme. getPath();
Systemout. println(fil enane);
Cc_i ngArea. set I mageFi | e(fil enane);
}
}

What's New in IDL 6.0 IDL-Java Bridge Examples

306

Chapter 4: Using Java Objects in IDL

s

JButton bl = new JButton("Cl ose this exanple");
bl. addActi onLi st ener (new Acti onLi stener() {
public void actionPerformed(Acti onEvent e) {
di spose();
}
1)

Cc_i ngArea = new
RSI | mageArea("c:\\rsi\\idl 60\\exanpl es\\data\\gl ow ng_gas.jpg",
new Di nensi on(m xsi ze, mysi ze));

Box mai nBox = Box.createVertical Box();
Box rowBox = Box.createHorizontal Box();
r owBox. add(b1l);

r owBox. add(bLoadFi | e) ;

c_control Box. add(I1);
c_control Box. add(r owBox) ;
mai nBox. add(c_contr ol Box) ;
mai nBox. add(c_i ngArea) ;

get Cont ent Pane() . add(mai nBox) ;

pack();
set Visible(true);
c_i ngAr ea. di spl ayl mage() ;
c_i ngAr ea. addResi zelLi st ener (new RSI | mageAr eaResi zeLi stener () {
public void areaResized(int newx, int newy) ({
Di mensi on cdim= c_control Box. getSi ze(null);

Insets i = getlnsets();
newx = i.left + i.right + newx;
new = i.top + cdimheight + new + i.bottom
set Si ze(new Di mensi on(newx, newy));
}
1)

}

public void setlnmageData(int [] ingData, int xsize, int ysize) {
Menor yl mageSour ce i ns = new Menoryl mageSour ce(xsi ze, ysize,
i mgData, 0, ysize);
I mage ingtnp = createl nage(i ns);
Graphics g = c_i ngArea. get Graphics();
g.drawi mage(ingtnp, O, 0, null);

IDL-Java Bridge Examples What's New in IDL 6.0

Chapter 4: Using Java Objects in IDL 307

public void setlmageData(byte []J[][] ingData, int xsize,

int ysize) {

Systemout.println("SIZE = "+xsi ze+"x" +ysi ze);
int newArray [] = new int[xsize*ysize];

int pixi = 0;

int curpix = 0;
short [] currgb = new short[3];
for (int i=0;i<mxsize;i++) {
for (int j=0;j<mysize;j++) {
for (int k=0;k<3; k++) {
currgb[k] = (short) inmgData[k][i][]];
currgb[k] = (currgb[k] < 128) ? (short) currgb[k] : (short)
(currgb[k] -256) ;
}
curpix = (int) currgb[0] * +
((int) currgb[1] * (int) Math.pow(2,8)) +
((int) currgb[2] * (int) Math.pow2, 16));
if (pixi %1000 == 0)
Systemout.printin("PIXI = "+pixi+
newAr r ay[pi xi ++] = cur pi x;
}
}

+cur pi Xx) ;

Menor yl mageSource i n8 = new Menoryl nageSour ce(xsi ze, ysize,
newArray, 0, ysize);
c_i ngArea. set | mageQhj (c_i ngAr ea. creat el nage(i ns));

}

public byte[][][] getlnageData()
{

int width = 1;

int he